首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous paper (Dehghanpour et al., Phys Rev E 83:065302, 2011a), we showed that relative permeability of mobilized oil, $k_\mathrm{ro}$ , measured during tertiary gravity drainage, is significantly higher than that of the same oil saturation in other tests where oil is initially a continuous phase. We also showed that tertiary $k_\mathrm{ro}$ strongly correlates to both water saturation, $S_\mathrm{w}$ , water flux (water relative permeability), $k_\mathrm{rw}$ , and the change in water saturation with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . To develop a model and understanding of the enhanced oil transport, identifying which of these parameters ( $S_\mathrm{w},\,k_{\mathrm{rw}}$ , or $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ ) plays the controlling role is necessary, but in the previous experiments these could not be deconvolved. To answer the remaining question, we conduct specific three-phase displacement experiments in which $k_{\mathrm{rw}}$ is controlled by applying a fixed water influx, and $S_\mathrm{w}$ develops naturally. We obtain $k_{\mathrm{ro}}$ by using the saturation data measured in time and space. The results suggest that steady-state water influx, in contrast to transient water displacement, does not enhance $k_{\mathrm{ro}}$ . Instead, reducing water influx rate results in excess oil flow. Furthermore, according to our pore scale hydraulic conductivity calculations, viscous coupling and fluid positioning do not sufficiently explain the observed correlation between $k_{\mathrm{ro}}$ and $S_{\mathrm{w}}$ . We conclude that tertiary $k_{\mathrm{ro}}$ is controlled by the oil mobilization rate, which in turn is linked to the rate of water saturation decrease with time, $\mathrm{d}S_\mathrm{w}/\mathrm{d}t$ . Finally, we develop a simple model which relates tertiary $k_{\mathrm{ro}}$ to transient two-phase gas/water relative permeability.  相似文献   

2.
The prepared microporous hydrotalcite (HT)–silica membrane was found to exhibit the molecular sieving characteristic of pristine silica material and high $\mathrm{CO}_{2}$ adsorption capacity of HT. The combined properties made enhanced $\mathrm{CO}_{2}$ permeability and separability from $\mathrm{CH}_{4}$ possible. The gas transport in the membrane was predominantly surface adsorption. The porous membrane overcame the Knudsen limitation and yielded the highest separation selectivity of 120 at 40 % $\mathrm{CO}_{2}$ feed concentration, $30\,^{\circ }\mathrm{C}$ operating temperature, and 100 kPa pressure difference.  相似文献   

3.
The effects of particle-size distribution on the longitudinal dispersion coefficient ( $D_{\mathrm{L}})$ D L ) in packed beds of spherical particles are studied by simulating a tracer column experiment. The packed-bed models consist of uniform and different-sized spherical particles with a ratio of maximum to minimum particle diameter in the range of 1–4. The modified version of Euclidian Voronoi diagrams is used to discretize the system of particles into cells that each contains one sphere. The local flow distribution is derived with the use of Laurent series. The flow pattern at low particle Reynolds number is then obtained by minimization of dissipation rate of energy for the dual stream function. The value of $D_{\mathrm{L}}$ D L is obtained by comparing the effluent curve from large discrete systems of spherical particles to the solution of the one-dimensional advection–dispersion equation. Main results are that at Peclet numbers above 1, increasing the width of the particle-size distribution increases the values of $D_{\mathrm{L}}$ D L in the packed bed. At Peclet numbers below 1, increasing the width of the particle-size distribution slightly lowers $D_{\mathrm{L}}$ D L .  相似文献   

4.
The mixed convection boundary-layer flow on one face of a semi-infinite vertical surface embedded in a fluid-saturated porous medium is considered when the other face is taken to be in contact with a hot or cooled fluid maintaining that surface at a constant temperature $T_\mathrm{{f}}$ . The governing system of partial differential equations is transformed into a system of ordinary differential equations through an appropriate similarity transformation. These equations are solved numerically in terms of a dimensionless mixed convection parameter $\epsilon $ and a surface heat transfer parameter $\gamma $ . The results indicate that dual solutions exist for opposing flow, $\epsilon <0$ , with the dependence of the critical values $\epsilon _\mathrm{{c}}$ on $\gamma $ being determined, whereas for the assisting flow $\epsilon >0$ , the solution is unique. Limiting asymptotic forms for both $\gamma $ small and large and $\epsilon $ large are also discussed.  相似文献   

5.
S. V. Kulikov 《Shock Waves》2013,23(6):575-581
In the present work the problem of detonation wave formation in a shock tube was considered in one-dimensional formulation. The Monte Carlo non-stationary method of statistical simulation (MCNMSS), also known as DSMC, was used for simulation. The method automatically takes into account all details of mass and heat transfer. At an initial moment, the low-pressure channel (LPC) of the shock tube was filled with gas A while the high-pressure chamber (HPC) was filled with gas C. The cross-sections of the HPC and LPC, as well as the temperatures of gases A and C were equal to each other. At the beginning of the simulation the ratio of pressures in the HPC and LPC was equal to 100. It was assumed that chemical reactions $\mathrm{{A}}+\mathrm{{M}} \rightarrow \mathrm{{B}}+\mathrm{{M}}$ ( $\mathrm{{M}}=\mathrm{{A}},\, \mathrm{{B}}$ and $\mathrm{{C}}$ ) took place. The ratio of molecular masses of gases $\mathrm{{A}},\, \mathrm{{B}}$ and $\mathrm{{C}}$ was taken as 20:20:1. Different reaction thresholds were considered. For the case of a low reaction threshold, the velocity of the resulting detonation wave was found to be higher than the Chapman–Jouguet velocity. A region with constant values of flow parameters inside product was observed. An increase of the reaction threshold led to disappearance of this region and gave rise to something similar to an expansion wave, with peaks of flow parameters at the leading part of the detonation wave. The values of these peaks were found to be constant in time. The velocity of the detonation wave became appreciably lower than the Chapman–Jouguet velocity. Further increase of the reaction threshold led to disappearance of detonation. The reactions $\mathrm{{A}}+\mathrm{{B}} \rightarrow \mathrm{{B}}+\mathrm{{B}}$ and $\mathrm{{A}}+\mathrm{{C}}\rightarrow \mathrm{{B}}+\mathrm{{C}}$ turned out to be very important for initiation of detonation.  相似文献   

6.
Double-diffusive natural convection in fluid-saturated porous medium inside a vertical enclosure bounded by finite thickness walls with opposing temperature, concentration gradients on vertical walls as well as adiabatic and impermeable horizontal ones has been performed numerically. The Darcy model was used to predict fluid flow inside the porous material, while thermal fields are simulated based on two-energy equations for fluid and solid phases on the basis of a local thermal non-equilibrium model. Computations have been performed for different controlling parameters such as the buoyancy ratio $N$ , the Lewis number Le, the anisotropic permeability ratio $R_\mathrm{p}$ , the fluid-to-solid thermal conductivity ratio $R_\mathrm{c}$ , the interphase heat transfer coefficient $\mathcal{H}$ , the ratio of the wall thickness to its height $D$ , the wall-to-porous medium thermal diffusivity ratio $R_\mathrm{w}$ , and the solid-to-fluid heat capacity ratio $\gamma $ . Thus, the effects of the controlling parameters on heat and mass transfer characteristics are discussed in detail. Moreover, the validity domain of the local thermal equilibrium (LTE) assumption has been delimited for different set of the governing parameters. It has been shown that Le has a noticeable significant effect on fluid temperature profiles and that higher $N$ values lead to a significant enhancement in heat and mass transfer rates. Moreover, for higher $\mathcal{H}, R_\mathrm{c}$ , $R_\mathrm{p}, R_\mathrm{w}$ , or $D$ values and/or lower $\gamma $ values, the solid and fluid phases tend toward LTE.  相似文献   

7.
The presence of impermeable barriers in a reservoir can significantly impede the buoyant migration of $\mathrm{CO}_2$ injected deep into a heterogeneous geological formation. An important consequence of the presence of these impermeable barriers in terms of the long-term storage of $\mathrm{CO}_2$ is the residual trapping that takes place beneath the barriers, which acts to both increase the storage potential of the reservoir and improve the storage security of the $\mathrm{CO}_2$ . Analytical results for the total amount of $\mathrm{CO}_2$ trapped in a reservoir with an uncorrelated random distribution of impermeable barriers are obtained for both two and three-dimensional cases. In two dimensions, it is shown that the total amount of $\mathrm{CO}_2$ contained in this fashion scales as $n^{5/4}$ , where $n$ is the number of barriers in the vertical direction. In three dimensions, the trapped amount scales as $n^c$ , where $5/4 \le c \le 2$ depending on the aspect ratio of the barriers. The analytical two-dimensional results are compared with results of detailed numerical simulations, and good agreement is observed.  相似文献   

8.
Hydrogels of different composition based on the copolymerization of N-isopropyl acrylamide and surfmers of different chemical structure were tested in elongation using Hencky/real definitions for stress, strain, and strain rate, offering a more scientific insight into the effect of deformation on the properties. In a range between $\dot {\varepsilon }=10$ and 0.01 s $^{-1}$ , the material properties are independent of strain rate and show a very clear strain hardening with a “brittle” sudden fracture. The addition of surfmer increases the strain at break $\varepsilon _{\mathrm {H}}^{\max }$ and at the same time leads to a failure of hyperelastic models. The samples can be stretched up to Hencky strains $\varepsilon _{\mathrm {H}}^{\max }$ between 0.6 and 2.5, depending on the molecular structure, yielding linear Young’s moduli E $_{0}$ between 2,700 and 39,000 Pa. The strain-rate independence indicates an ideal rubberlike behavior and fracture in a brittle-like fashion. The resulting stress at break $\sigma _{\textrm max}$ can be correlated with $\varepsilon _{\mathrm {H}}^{\max } $ and $E_{0}$ as well as with the solid molar mass between the cross-linking points $M_{\mathrm {c}}^{\textrm {solids}} $ , derived from $E_{0}$ .  相似文献   

9.
Limestone dissolution by $\hbox {CO}_2$ -rich brine induces critical changes of the pore network geometrical parameters such as the pore size distribution, the connectivity, and the tortuosity which govern the macroscopic transport properties (permeability and dispersivity) that are required to parameterize the models, simulating the injection and the fate of $\hbox {CO}_2$ . A set of four reactive core-flood experiments reproducing underground conditions ( $T = 100\,^{\circ }\hbox {C}$ and $P = 12$ MPa) has been conducted for different $\hbox {CO}_2$ partial pressures $(0.034 < P_{\mathrm{CO}_2}< 3.4\; \hbox {MPa})$ in order to study the different dissolution regimes. X-ray microtomographic images have been used to characterize the changes in the structural properties from pore scale to Darcy scale, while time-resolved pressure loss and chemical fluxes enabled the determination of the sample-scale change in porosity and permeability. The results show the growth of localized dissolution features associated with high permeability increase for the highest $P_{\mathrm{CO}_2}$ , whereas dissolution tends to be more homogeneously distributed for lower values of $P_{\mathrm{CO}_2}$ . For the latter, the higher the $P_{\mathrm{CO}_2}$ , the more the dissolution patterns display ramified structures and permeability increase. For the lowest value of $P_{\mathrm{CO}_2}$ , the preferential dissolution of the calcite cement associated with the low dissolution kinetics triggers the transport that may locally accumulate and form a microporous material that alters permeability and produces an anti-correlated porosity–permeability relationship. The combined analysis of the pore network geometry and the macroscopic measurements shows that $P_{\mathrm{CO}_2}$ regulates the tortuosity change during dissolution. Conversely, the increase of the exponent value of the observed power law permeability–porosity trend while $P_{\mathrm{CO}_2}$ increases, which appears to be strongly linked to the increase of the effective hydraulic diameter, depends on the initial rock structure.  相似文献   

10.
Turbulent mixing generated by shock-driven acceleration of a perturbed interface is simulated using a new multi-component Reynolds-averaged Navier–Stokes (RANS) model closed with a two-equation $K$ $\epsilon $ model. The model is implemented in a hydrodynamics code using a third-order weighted essentially non-oscillatory finite-difference method for the advection terms and a second-order central difference method for the gradients in the source and diffusion terms. In the present reshocked Richtmyer–Meshkov instability and mixing study, an incident shock with Mach number $M\!a_{\mathrm{s}}=1.20$ is generated in air and progresses into a sulfur hexafluoride test section. The time evolution of the predicted mixing layer widths corresponding to six shock tube test section lengths are compared with experimental measurements and three-dimensional multi-mode numerical simulations. The mixing layer widths are also compared with the analytical self-similar power-law solution of the simplified model equations prior to reshock. A set of model coefficients and initial conditions specific to these six experiments is established, for which the widths before and after reshock agree very well with experimental and numerical simulation data. A second set of general coefficients that accommodates a broader range of incident shock Mach numbers, Atwood numbers, and test section lengths is also established by incorporating additional experimental data for $M\!a_{\mathrm{s}}=1.24$ , $1.50$ , and $1.98$ with $At=0.67$ and $M\!a_{\mathrm{s}}=1.45$ with $At=-0.67$ and previous RANS modeling. Terms in the budgets of the turbulent kinetic energy and dissipation rate equations are examined to evaluate the relative importance of turbulence production, dissipation and diffusion mechanisms during mixing. Convergence results for the mixing layer widths, mean fields, and turbulent fields under grid refinement are presented for each of the $M\!a_{\mathrm{s}}=1.20$ cases.  相似文献   

11.
We study the rheological behavior of mixtures of foams and pastes, which can be described as suspensions of bubbles in yield stress fluids. Model systems are designed by mixing monodisperse aqueous foams and concentrated emulsions. The elastic modulus of the bubble suspensions is found to depend on the elastic capillary number $\textit{Ca}_{_G}$ , defined as the ratio of the paste elastic modulus to the bubble capillary pressure. For values of $\textit{Ca}_{_G}$ larger than $\simeq 0.5$ , the dimensionless elastic modulus of the aerated material decreases as the bubble volume fraction $\phi $ increases, suggesting that bubbles behave as soft elastic inclusions. Consistently, this decrease is all the sharper as $\textit{Ca}_{_G}$ is high, which accounts for the softening of the bubbles as compared to the paste. By contrast, we find that the yield stress of most studied materials is not modified by the presence of bubbles. This suggests that their plastic behavior is governed by the plastic capillary number $\textit{Ca}_{\tau_y}$ , defined as the ratio of the paste yield stress to the bubble capillary pressure. At low $\textit{Ca}_{\tau_y}$ values, bubbles behave as nondeformable inclusions, and we predict that the suspension dimensionless yield stress should remain close to unity, in agreement with our data up to $\textit{Ca}_{\tau_y}=0.2$ . When preparing systems with a larger target value of $\textit{Ca}_{\tau_y}$ , we observe bubble breakup during mixing, which means that they have been deformed by shear. It then seems that a critical value $\textit{Ca}_{\tau_y}\simeq 0.2$ is never exceeded in the final material. These observations might imply that, in bubble suspensions prepared by mixing a foam and a paste, the suspension yield stress is always close to that of the paste surrounding the bubbles. Finally, at the highest $\phi $ investigated, the yield stress is shown to increase abruptly with $\phi $ : this is interpreted as a “foamy yield stress fluid” regime, which takes place when the paste mesoscopic constitutive elements (here, the oil droplets) are strongly confined in the films between the bubbles.  相似文献   

12.
Foam injection is a proven enhanced oil recovery (EOR) technique for heterogeneous reservoirs, but is less studied for EOR in fractured systems. We experimentally investigated tertiary \(\text {CO}_{2}\) injections, and \(\text {N}_{2}\) - and \(\text {CO}_{2}\) -foam injections for enhanced oil recovery in fractured, oil-wet limestone core plugs. Miscible \(\text {CO}_{2}\) and \(\text {CO}_{2}\) -foam was compared with immiscible \(\text {CO}_{2}\) - and \(\text {N}_{2}\) -foam as tertiary recovery techniques, subsequent to waterfloods, in fractured rocks with different wettability preferences. At water-wet conditions waterfloods produced approximately 40 % OOIP, by spontaneous imbibition. Waterflood oil recovery at oil-wet conditions was below 20 % OOIP, due to suppressed imbibition where water predominantly flowed through the fractures, unable to mobilize the oil trapped in the matrix. Tertiary, supercritical \(\text {CO}_{2}\) -mobilized oil trapped in the matrix, particularly at weakly oil-wet conditions, by diffusion. Recovery by diffusion was high due to small core samples, high initial oil saturation and a continuous oil phase at oil-wet conditions. Both immiscible \(\text {CO}_{2}\) - and \(\text {N}_{2}\) -foams and miscible, supercritical \(\text {CO}_{2}\) -foam demonstrated high ultimate oil recoveries, but immiscible foam was less efficient (30 pore volumes injected) compared to miscible foam (2 pore volumes injected) to reach ultimate recovery. This is explained by the capillary threshold pressure preventing the injected \(\text {N}_{2}\) gas from entering the matrix, verified by computed X-ray tomography, and the mobilized oil was displaced by the aqueous surfactant in the foam. At miscible conditions, there exists no capillary entry pressure between the oil-saturated matrix and the injected \(\text {CO}_{2}\) , allowing foam to invade the matrix for efficient oil recovery.  相似文献   

13.
The permeability of coal is an important parameter in mine methane control and coal bed methane exploitation because it determines the practicability of methane extraction. We developed a new coal permeability model under tri-axial stress conditions. In our model, the coal matrix is compressible and Biot’s coefficient, which is considered to be 1 in existing models, varies between 0 and 1. Only a portion of the matrix deformation, which is represented by the effective coal matrix deformation factor $f_\mathrm{m}$ , contributes to fracture deformation. The factor $f_\mathrm{m}$ is a parameter of the coal structure and is a constant between 0 and 1 for a specific coal. Laboratory tests indicate that the Sulcis coal sample has an $f_\mathrm{m}$ value of 0.1794 for $\hbox {N}_{2}$ and $\hbox {CO}_{2}$ . The proposed permeability model was evaluated using published data for the Sulcis coal sample and is compared to three popular permeability models. The proposed model agrees well with the observed permeability changes and can predict the permeability of coal better than the other models. The sensitivity of the new model to changes in the physical, mechanical and adsorption deformation parameters of the coal was investigated. Biot’s coefficient and the bulk modulus mainly affect the effective stress term in the proposed model. The sorption deformation parameters and the factor $f_\mathrm{m}$ affect the coal matrix deformation term.  相似文献   

14.
The steady mixed convection boundary layer flows over a vertical surface adjacent to a Darcy porous medium and subject respectively to (i) a prescribed constant wall temperature, (ii) a prescribed variable heat flux, $q_\mathrm{w} =q_0 x^{-1/2}$ q w = q 0 x ? 1 / 2 , and (iii) a convective boundary condition are compared to each other in this article. It is shown that, in the characteristic plane spanned by the dimensionless flow velocity at the wall ${f}^{\prime }(0)\equiv \lambda $ f ′ ( 0 ) ≡ λ and the dimensionless wall shear stress $f^{\prime \prime }(0)\equiv S$ f ′ ′ ( 0 ) ≡ S , every solution $(\lambda , S)$ ( λ , S ) of one of these three flow problems at the same time is also a solution of the other two ones. There also turns out that with respect to the governing mixed convection and surface heat transfer parameters $\varepsilon $ ε and $\gamma $ γ , every solution $(\lambda , S)$ ( λ , S ) of the flow problem (iii) is infinitely degenerate. Specifically, to the very same flow solution $(\lambda , S)$ ( λ , S ) there corresponds a whole continuous set of values of $\varepsilon $ ε and $\gamma $ γ which satisfy the equation $S=-\gamma (1+\varepsilon -\lambda )$ S = ? γ ( 1 + ε ? λ ) . For the temperature solutions, however, the infinite degeneracy of the velocity solutions becomes lifted. These and further outstanding features of the convective problem (iii) are discussed in the article in some detail.  相似文献   

15.
This article deals with self-excited vibrations, attractivity of stationary solutions, and the corresponding bifurcation behavior of two-dimensional differential inclusions of the type $\mathbf{M}\mathbf{q}'' + \mathbf{D}\mathbf{q}' + (\mathbf{K} + \bar{\mu}\mathbf{N})\mathbf{q} \in-\mathbf{R}\operatorname{Sign}(\mathbf{q}')$ . For the smooth case R=0, the equilibrium may become unstable due to non-conservative positional forces stemming from the circulatory matrix N. This type of instability is usually referred to as flutter instability and the loss of stability is related to a Hopf bifurcation of the steady state, which occurs for a critical parameter $\bar{\mu}= \bar{\mu}_{\mathrm{crit}}$ . For R0, the steady state is a set of equilibria, which turns out to be attractive for all values of the bifurcation parameter $\bar{\mu}$ . Depending on $\bar{\mu}$ , the basin of attraction of the equilibrium set can be infinite or finite. The transition from an infinite to a finite basin of attraction occurs at the stability threshold $\bar{\mu}_{\mathrm{crit}}$ of the underlying smooth problem. For the finite basin of attraction, its size is proportional to the Coulomb friction and inverse-proportional to $(\bar{\mu}- \bar{\mu}_{\mathrm{crit}})$ . By adding Coulomb damping the notion of steady state stability for the smooth problem is replaced by the question whether the basin of attraction of the steady state is infinite or finite. Simultaneously, the local Hopf-bifurcation is replaced by a global bifurcation. This implies that in the presence of Coulomb damping the occurrence of self-excited vibrations can only be investigated with regard to the perturbation level.  相似文献   

16.
When a porous medium drains, the wetting phase saturation in the medium [the fractional volume of wetting phase (often water) in the pores] is typically observed to approach a minimum value, referred to as the wetting phase residual saturation ( $S_{\text {wr}}$ ). While many simulators of unsaturated and multiphase flow assume $S_{\text {wr}}$ to be a single value for a given fluid and porous medium system, there is considerable evidence that $S_{\text {wr}}$ may be a dynamic property, with its value a function of the rate of saturation change. The objective of this work was to study this relationship, with emphasis on understanding the effect of drainage rate on the apparent residual ( $S_{\text {wr-apparent}}$ ) at moderate capillary pressures and over short time frames. Dynamic unsaturated drainage experiments were conducted to explore this relationship. A total of 61 experiments were conducted, involving 363 individual secondary drainages. Experiments covered a total of four different porous media, and three wetting phases. Results indicate that systems that exhibit greater resistance to flow (lower mean grain size and higher kinematic viscosity) also exhibit a greater sensitivity in $S_{\text {wr-apparent}}$ to drainage rate. An imaging experiment was conducted to examine whether the source of the relationship could be observed through continuum-scale imaging. Results of the imaging were able to rule out membrane desaturation artifacts as a cause of the relationship, but were unable to identify significant differences in fluid configurations between fast and slow drainages that might lead to the observed effects.  相似文献   

17.
In this paper, we explore new conditions for an elasticity tensor to belong to a given symmetry class. Our goal is to propose an alternative approach to the identification problem of the symmetry class, based on polynomial invariants and covariants of the elasticity tensor C, rather than on spectral properties of the Kelvin representation. We compute a set of algebraic relations which describe precisely the orthotropic ( $[\mathbb {D}_{2}]$ ), trigonal ( $[\mathbb {D}_{3}]$ ), tetragonal ( $[\mathbb {D}_{4}]$ ), transverse isotropic ([SO(2)]) and cubic ( $[\mathbb {O}]$ ) symmetry classes in $\mathbb {H}^{4}$ , the highest-order irreducible component in the decomposition of $\mathbb {E}\mathrm {la}$ . We provide a bifurcation diagram which describes how one “travels” in $\mathbb {H}^{4}$ from a given isotropy class to another. Finally, we study the link between these polynomial invariants and those obtained as the coefficients of the characteristic or the Betten polynomials. We show, in particular, that the Betten invariants do not separate the orbits of the elasticity tensors.  相似文献   

18.
An analytical solution is presented for the boundary-layer flow and heat transfer over a permeable stretching/shrinking surface embedded in a porous medium using the Brinkman model. The problem is seen to be characterized by the Prandtl number $Pr$ , a mass flux parameter $s$ , with $s>0$ for suction, $s=0$ for an impermeable surface, and $s<0$ for blowing, a viscosity ratio parameter $M$ , the porous medium parameter $\Lambda $ and a wall velocity parameter $\lambda $ . The analytical solution identifies critical values which agree with those previously determined numerically (Bachok et al. Proceedings of the fifth International Conference on Applications of Porous Media, 2013) and shows that these critical values, and the consequent dual solutions, can arise only when there is suction through the wall, $s>0$ .  相似文献   

19.
The injection of supercritical carbon dioxide ( $\text{ CO}_{2})$ in deep saline aquifers leads to the formation of a $\text{ CO}_{2}$ rich phase plume that tends to float over the resident brine. As pressure builds up, $\text{ CO}_{2}$ density will increase because of its high compressibility. Current analytical solutions do not account for $\text{ CO}_{2}$ compressibility and consider a volumetric injection rate that is uniformly distributed along the whole thickness of the aquifer, which is unrealistic. Furthermore, the slope of the $\text{ CO}_{2}$ pressure with respect to the logarithm of distance obtained from these solutions differs from that of numerical solutions. We develop a semianalytical solution for the $\text{ CO}_{2}$ plume geometry and fluid pressure evolution, accounting for $\text{ CO}_{2}$ compressibility and buoyancy effects in the injection well, so $\text{ CO}_{2}$ is not uniformly injected along the aquifer thickness. We formulate the problem in terms of a $\text{ CO}_{2}$ potential that facilitates solution in horizontal layers, with which we discretize the aquifer. Capillary pressure is considered at the interface between the $\text{ CO}_{2}$ rich phase and the aqueous phase. When a prescribed $\text{ CO}_{2}$ mass flow rate is injected, $\text{ CO}_{2}$ advances initially through the top portion of the aquifer. As $\text{ CO}_{2}$ is being injected, the $\text{ CO}_{2}$ plume advances not only laterally, but also vertically downwards. However, the $\text{ CO}_{2}$ plume does not necessarily occupy the whole thickness of the aquifer. We found that even in the cases in which the $\text{ CO}_{2}$ plume reaches the bottom of the aquifer, most of the injected $\text{ CO}_{2}$ enters the aquifer through the layers at the top. Both $\text{ CO}_{2}$ plume position and fluid pressure compare well with numerical simulations. This solution permits quick evaluations of the $\text{ CO}_{2}$ plume position and fluid pressure distribution when injecting supercritical $\text{ CO}_{2}$ in a deep saline aquifer.  相似文献   

20.
The present study addresses the self-similar problem of unsteady shock reflection on an inclined wedge. The start-up conditions are studied by modifying the wedge corner and allowing for a finite radius of curvature. It is found that the type of shock reflection observed far from the corner, namely regular or Mach reflection, depends intimately on the start-up condition, as the flow “remembers” how it was started. Substantial differences were found. For example, the type of shock reflection for an incident shock Mach number $M=6.6$ and an isentropic exponent $\gamma =1.2$ changes from regular to Mach reflection between $44^\circ $ and $45^\circ $ when a straight wedge tip is used, while the transition for an initially curved wedge occurs between $57^\circ $ and $58^\circ $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号