首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
结构多样的HIV-1整合酶抑制剂:过去、现在和未来   总被引:2,自引:0,他引:2  
姜晓华  龙亚秋 《有机化学》2004,24(11):1380-1388
HIV-1整合酶是逆转录病毒复制的必需酶,它催化病毒DNA与宿主染色体DNA的整合,而且在人类细胞中没有类似物,因此成为治疗艾滋病的富有吸引力和合理的靶标.最近十年,一大批HIV-1整合酶抑制剂被鉴定出来,其中一些化合物显示选择性的抑制HIV-1整合酶和阻断病毒复制的活性,而最有影响的两类抑制剂是含邻苯二酚的多羟基芳环化合物和最近报道的芳基β-二酮酸类化合物.全面综述了用于HIV-1整合酶抑制剂研究以发展抗HIV新药的不同种类的化合物,包括苯并咪唑类衍生物、核苷类、多肽、羟基取代的芳环化合物及二酮酸类化合物等,并阐述了这些化合物中对抑制活性重要的结构特征.同时也介绍了HIV-1整合酶的结构、功能以及HIV-1整合酶抑制剂的设计原理和作用机制.  相似文献   

2.
HIV整合酶抑制剂的研究进展   总被引:1,自引:0,他引:1  
HIV整合酶是病毒DNA复制所必需的3个基本酶之一,是新批准上市的抗艾滋病药物Raltegravir(MK-0518,Isentress)的分子靶标.HIV整合酶抑制剂已经成为新一类治疗获得性免疫缺陷综合症的药物.对HIV整合酶抑制剂的研究进展进行了综述,为研究新型人类免疫缺陷病毒整合酶抑制剂提供参考.  相似文献   

3.
HIV-1病毒DNA与整合酶结合后的构象变化   总被引:1,自引:1,他引:0  
用分子动力学(MD)模拟方法优化了HIV-1病毒DNA与整合酶(IN)二聚体(IN2)复合物模型结构, 并分析了HIV-1病毒DNA结合IN2后的构象变化. 结果表明, 按照HIV-1病毒DNA与IN2结合能力的强度, 病毒DNA可分为五个区域: 非结合区、强结合区1、弱结合区、强结合区2和反应区, 并用结合自由能计算验证了该分区的合理性. 与未结合IN2的病毒DNA相比, 复合物模型中病毒DNA除了非结合区碱基外, 其它四个区域的碱基构象变化较大. 复合物模型中病毒DNA主链较大程度地偏离标准B型DNA以及结合部位的小沟变宽都是识别IN的结构基础. 模拟结果与实验数据吻合较好, 为基于HIV-1 IN的药物分子设计提供了一定的结构信息.  相似文献   

4.
用分子对接方法(Docking)研究了HIV-1整合酶与其抑制剂金精三羧酸的结合过程.为弄清金属离子在结合中所起的作用,选择含有一个Mg+2或不含Mg+2的两种不同的整合酶受体分别与金精三羧酸对接.结果表明, Mg+2对稳定配体与受体的结合起了重要作用. 金精三羧酸配体与含有一个金属Mg+2的整合酶受体对接,最优结合自由能为-45.19 kJ/mol. 当Mg+2失去后,整合酶的活性中心构象将发生变化,使金精三羧酸抑制剂与整合酶的结合自由能(-24.35 kJ/mol)明显增加. 预测了未知的HIV-1整合酶与其抑制剂金精三羧酸的复合物结构, 并可对基于结构的抗HIV-1整合酶的药物设计提供重要信息.  相似文献   

5.
用分子对接和分子动力学(MD)模拟方法研究了一类咖啡酰基和没食子酰基类HIV-1整合酶抑制剂与整合酶之间的相互作用模式, 结果表明该类抑制剂分子上的两个侧链基团(咖啡酰基或没食子酰基)与整合酶的DDE基序之间的相互作用对抑制整合酶活性起到关键作用. 当侧链基团为没食子酰基时, 可以提高该类抑制剂与整合酶的结合能力. 采用线性相互作用能方法(LIE)计算了该类抑制剂与整合酶之间的结合自由能, 预测值与实验值相吻合, 均方根偏差RMSD为1.39 kJ•mol-1, 以上结果可为基于结构的HIV-1整合酶抑制剂设计提供有用的信息.  相似文献   

6.
胡建平  张小轶  唐典勇  常珊 《化学学报》2009,67(19):2177-2183
用分子对接方法研究了一系列芳香二酮酸类抑制剂与HIV-1整合酶的识别及相互作用. 结果表明, 抑制剂结合到整合酶Asp64~Leu68, Thr115~Phe121, Gln148~Lys159和Mg2+所构成的口袋区, 抑制机理与5CITEP相似. 采用分子动力学模拟和MM/PBSA方法计算了芳香二酮酸类抑制剂与整合酶之间的结合自由能, 计算结果与实验值相吻合, 平均绝对偏差为3.6 kJ/mol, 体系范德华相互作用和溶剂化效应的非极性项是利于形成复合物的主要因素. 相关性分析结果表明, 结合自由能值与疏水相互作用有较强的线性相关(R=0.61), 基于此, 用多元线性回归方法给出了一个能较强预测芳香二酮酸类抑制剂与HIV-1整合酶的结合自由能预测模型, 为后续基于抑制剂结构的抗HIV-1药物分子设计提供指导.  相似文献   

7.
王丽东  王存新 《化学学报》2008,66(7):817-822
HIV-1整合酶(IN)通过依赖金属离子的两步反应将病毒DNA整合入宿主细胞过程中。结合于HIV-1上的金属离子个数的变化直接影响整合酶与抑制剂之间的结合。本工作用同源模建方法搭建了每条单链核心区具有两个Mg2+ 的(2Mg-IN-Core)和具有一个Mg2+ 的HIV-1 IN二聚体核心区模型(1Mg-IN-Core)。分子对接分别得到它们与硫氮硫扎平类化合物能量较低的复合物结构,把对接结果进行了比较。研究发现:当整合酶中结合的Mg2+个数改变时,它与抑制剂的结合模式也会发生很大的变化;抑制剂能够特异的且稳定的与2Mg-IN-Core模型的活性位点结合;同时与ASP64和GLU152螯合的那个Mg2+离子对于硫氮硫扎平抑制剂与整合酶上的结合有很大的影响。2Mg-IN-Core模型与抑制剂的复合物平均结构进行了2000 ps的 分子动力学模拟,分析发现同时与ASP64及ASP116螯合的Mg2+与IN蛋白形成了四个稳定的螯合键;同时与ASP64及GLU152螯合的Mg2+可与IN结合、也可与抑制剂形成稳定的配位键,这个Mg2+对IN与硫氮硫扎平抑制剂之间的结合有较大影响。  相似文献   

8.
用分子对接方法研究HIV-1整合酶与病毒DNA的结合模式   总被引:2,自引:0,他引:2  
用分子对接方法研究了HIV-1整合酶(Integrase, IN)二聚体与3’ 端加工(3’ Processing, 3’-P)前的8 bp及27 bp病毒DNA的相互作用, 并获得IN与27 bp病毒DNA的特异性结合模式. 模拟结果表明, IN有特异性DNA结合区和非特异性DNA结合区; IN二聚体B链的K14, R20, K156, K159, K160, K186, K188, R199和A链的K219, W243, K244, R262, R263是IN结合病毒DNA的关键残基; 并从结构上解释了能使IN发挥活性的病毒DNA的最小长度是15 bp. 通过分析结合能发现, IN与DNA稳定结合的主要因素是非极性相互作用, 而关键残基与病毒DNA相互识别主要依赖于极性相互作用. 模拟结果与实验数据较吻合.  相似文献   

9.
用分子对接程序(Autodock)将含有一个Mg2+的HIV-1整合酶核心区(以下简称IN-A)与抑制剂小分子金精三羧酸(简称Aurin)进行对接,预测其未知的复合物结构,然后用分子动力学(MD)方法对IN-A与Aurin的对接结果进行了950 ps的模拟.MD模拟结果发现,IN-A与Aurin形成了两个稳定的氢键,Mg2+也与Aurin上的氧原子形成了稳定的配键,IN-A与Aurin之间的静电相互作用能和范德华相互作用能的平均值分别为-205.8和-162.7 kJ/mol.根据MD模拟得到的IN-A与Aurin相互作用后的构象变化信息,我们对对接复合物结构进行了修正,给出了更加合理和稳定的复合物预测结构.本工作得到的HIV-1整合酶与抑制剂Aurin的结合模式信息将有助于设计和改造出效果更好的抗HIV-1整合酶的先导化合物.  相似文献   

10.
HIV-1整合酶与抑制剂LCA的结合模式及抗药性研究   总被引:2,自引:0,他引:2  
Ⅰ型人体免疫缺陷病毒(HIV-1)整合酶(integrase, IN)是病毒生命周期中一个重要的酶, 也是研究抗HIV新药的一个重要靶点. 运用多构象分子对接和分子动力学(molecular dynamics, MD)模拟, 研究了野生型整合酶核心区及G140S点突变的突变态整合酶核心区与抑制剂L-菊苣酸(L-chicoric acid, LCA)的结合模式, 并基于该结合模式探讨了G140S突变态整合酶对抑制剂LCA的抗药性. 结果表明: LCA结合到G140S突变态整合酶核心区中的位置与结合到野生型整合酶核心区的位置不同, 结合位置的差异导致LCA抑制作用的部分丧失; IN功能Loop区的柔性以及Mg2+离子与三个关键残基D64, D116和E152之间的相互作用有助于IN发挥生物学功能; G140S突变态整合酶核心区中的E152与LCA的排斥作用、K159与LCA结合能力的变弱以及Y143指向IN的口袋区是产生抗药性的重要原因. 这些模拟结果与实验结果吻合, 可为基于IN的抗HIV药物分子设计提供一些有用信息.  相似文献   

11.
The replication of HIV-1 requires the integration of its cyclic DNA into host DNA by HIV-1 integrase (IN), which includes two important reactions, 3'-processing and strand transfer, both catalyzed by HIV-1 IN. Disrupting either of the reactions will fulfill the purpose of inhibiting the replication of HIV-1. In this paper, pharmacophore modeling and molecular docking are employed to investigate the inhibition mechanism of the HIV-1 IN strand transfer inhibitors (INSTIs). Based on the results, we suggest that the inhibition mechanism of INSTIs involves the inhibitor chelating the cofactors Mg2+ and its forming hydrogen bonds with some crucial residues adjacent to the DDE active center.  相似文献   

12.
[structure: see text] HIV-1 integrase is a critical enzyme for viral replication, and its inhibition is an emerging target for potential antiviral chemotherapy. We have discovered a novel inhibitor, integramycin, from screening of fermentation extracts using an in vitro assay. Integramycin possesses a hexacyclic ring system and exhibited an IC50 value of 4 microM against HIV-1 integrase (strand transfer). The isolation, structure elucidation, stereochemistry, conformation, and biological activity has been described.  相似文献   

13.
Understanding the molecular mechanism of HIV-1 integrase (IN) activity is critical to find functional inhibitors for an effective AIDS therapy. A robust, fast, and sensitive method for studying IN activity is required. In this work, an assay for real-time label-free monitoring of the IN activity based on surface plasmon resonance was developed. This assay enabled direct monitoring of the integration of a viral doubled-stranded (ds) DNA into the host genome. The strand transfer reaction was detected by using two different DNA targets: supercoiled plasmid (pUC 19) and short palindrome oligonucleotide. The effect of the length of the DNA target on the possibility to monitor the actual process of the strand transfer reaction is discussed. The surface density of integrated ds-DNA was determined. IN binding to the oligonucleotide complexes and model DNA triplexes in the presence of various divalent ions as metal cofactors was investigated as well. The assay developed can serve as an important analytical tool to search for potential strand transfer reaction inhibitors as well as for the study of compounds interfering with the binding of ds long terminal repeats–IN complexes with the host DNA. HIV-1 integrase strand transfer activity was monitored in real time using a multichannel surface plasmon resonance biosensor. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
As one of the three viral encoded enzymes of HIV-1 infection, HIV-1 integrase has become an attractive drug target for the treatment. Diketoacid compounds (DKAs) are one kind of potent and selective inhibitors of HIV-1 IN. In the present work, two three-dimensional QSAR techniques (CoMFA and CoMSIA) were employed to correlate the molecular structure with the activity of inhibiting the strand transfer for 147 DKAs. The all-oritation search (AOS) and all-placement search (APS) were used to optimize the CoMFA model. The diketo and keto-enol tautomers of DKAs were also used to establish the CoMFA models. The results indicated that the enol was the dominant conformation in the HIV-1 IN and DKAs complexes. It can provide a new method and reference to identify the bioactive conformation of drugs by using QSAR analysis. The best CoMSIA model, with five fields combined, implied that the hydrophobic field is very important as well as the steric and electrostatic fields. All models indicated favorable internal validation. A comparative analysis with the three models demonstrated that the CoMFA model seems to be more predictive. The contour maps could afford steric, electrostatic, hydrophobic and H-bond information about the interaction of ligand-receptor complex visually. The models would give some useful guidelines for designing novel and potent HIV-1 integrase inhibitors.  相似文献   

15.
Summary We report structural models of the full-length integrase enzyme (IN) of the human immunodeficiency virus type 1 (HIV-1) and its complex with viral and human DNA. These were developed by means of molecular modeling techniques using all available experimental evidence, including X-ray crystallographic and NMR structures of portions of the full-length protein. Special emphasis was placed on obtaining a model of the enzyme’s active site with the viral DNA apposed to it, based on the hypothesis that such a model would allow structure-based design of inhibitors that retain activity in vivo. This was because bound DNA might be present in vivo after 3’-processing but before strand transfer. These structural models were used to study the potential binding modes of various diketo-acid HIV-1 IN inhibitors (many of them preferentially inhibiting strand transfer) for which no experimentally derived complexed structures are available. The results indicate that the diketo-acid IN inhibitors probably chelate the metal ion in the catalytic site and also prevent the exposure of the 3’-processed end of the viral DNA to human DNA.  相似文献   

16.
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.  相似文献   

17.
Human immunodeficiency virus type-1 integrase (HIV-1 IN) is an essential enzyme for effective viral replication. Diketo acids such as L-731,988 and S-1360 are potent and selective inhibitors of HIV-1 IN. In this study, we used molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy between HIV-1 IN and L-731,988 and 10 of its derivatives and analogues. This hybrid methodology has the advantage that it includes quantum effects such as ligand polarisation upon binding, which can be very important when highly polarisable groups are embedded in anisotropic environments, as for example in metal-containing active sites. Furthermore, an energy decomposition analysis was performed to determine the contributions of individual residues to the enzyme-inhibitor interactions on averaged structures obtained from rather extensive conformational sampling. Analysis of the results reveals first that there is a correlation between protein-ligand interaction energy and experimental strand transfer into human chromosomes and secondly that the Asn-155, Lys-156 and Lys-159 residues and the Mg(2+) ion are crucial to anti-HIV IN activity. These results may explain the available experimental data.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme for splicing a viral DNA (vDNA) replica of its genome into host cell chromosomal DNA (hDNA) and has been recently recognized as a promising therapeutic target for developing anti-AIDS agents. The interaction between HIV-1 IN and vDNA plays an important role in the integration process of the virus. However, a detailed understanding about the mechanism of this interactions as well as the action of the anti-HIV drug raltegravir (RAL, approved by FDA in 2007) targeting HIV-1 IN in the inhibition of the vDNA strand transfer is still absent. In the present work, a molecular modeling study by combining homology modeling, molecular dynamics (MD) simulations with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), and molecular mechanics Generalized-Born surface area (MM-GBSA) calculations was performed to investigate the molecular mechanism of HIV-1 IN-vDNA interactions and the inhibition action of vDNA strand transfer inhibitor (INSTI) RAL. The structural analysis showed that RAL did not influence the interaction between vDNA and HIV-1 IN, but rather targeted a special conformation of HIV-1 IN to compete with host DNA and block the function of HIV-1 IN by forcing the 3'-OH of the terminal A17 nucleotide away from the three catalytic residues (Asp64, Asp116, and Glu152) and two Mg(2+) ions. Thus, the obtained results could be helpful for understanding of the integration process of the HIV-1 virus and provide some new clues for the rational design and discovery of potential compounds that would specifically block HIV-1 virus replication.  相似文献   

19.
HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski’s rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号