首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As is well known, controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip is significant and has many applications in bioanalysis based on magnetic beads. However, it is a challenge to tailor the magnetic field introduced by external permanent magnets or electromagnets on the micrometer scale. Here, we demonstrated a simple approach to controlling the local magnetic field distribution on the micrometer scale in a microfluidic chip by nickel patterns encapsulated in a thin poly(dimethylsiloxane) (PDMS) film under the fluid channel. With the precisely controlled magnetic field, magnetic bead patterns were convenient to generate. Moreover, two kinds of fluorescent magnetic beads were patterned in the microfluidic channel, which demonstrated that it was possible to generate different functional magnetic bead patterns in situ, and could be used for the detection of multiple targets. In addition, this method was applied to generate cancer cell patterns.  相似文献   

2.
Kim KS  Park JK 《Lab on a chip》2005,5(6):657-664
This paper describes a novel microfluidic immunoassay utilizing binding of superparamagnetic nanoparticles to beads and deflection of these beads in a magnetic field as the signal for measuring the presence of analyte. The superparamagnetic 50 nm nanoparticles and fluorescent 1 microm polystyrene beads are immobilized with specific antibodies. When target analytes react with the polystyrene beads and superparamagnetic nanoparticles simultaneously, the superparamagnetic nanoparticles can be attached onto the microbeads by the antigen-antibody complex. In the poly(dimethylsiloxane)(PDMS) microfluidic channel, only the microbeads conjugated with superparamagnetic nanoparticles by analytes consequently move to the high gradient magnetic fields under the specific applied magnetic field. In this study, the magnetic force-based microfluidic immunoassay is successfully applied to detect the rabbit IgG and mouse IgG as model analytes. The lowest concentration of rabbit IgG and mouse IgG measured over the background is 244 pg mL(-1) and 15.6 ng mL(-1), respectively. The velocities of microbeads conjugated with superparamagnetic nanoparticles are demonstrated by magnetic field gradients in microfluidic channels and compared with the calculated magnetic field gradients. Moreover, dual analyte detection in a single reaction is also performed by the fluorescent encoded microbeads in the microfluidic device. Detection range and lower detection limit can be controlled by the microbeads concentration and the higher magnetic field gradient.  相似文献   

3.
Magnetic digital microfluidics uses magnetic force to manipulate droplets on a Teflon‐coated substrate through the added magnetic particles. To achieve a wide range of droplet manipulation, hydrophilic patterns, known as surface energy traps, are introduced onto the Teflon‐coated hydrophobic substrate. However, the Teflon‐coated substrate is difficult to modify because it is nonwettable, and existing techniques for patterning surface energy traps have many limitations. Inspired by the mussel adhesion mechanism, we use polydopamine, a bioinspired substance that adheres strongly to almost any materials, to pattern surface energy traps on the Teflon‐coated substrate with a great ease. We have optimized the polydopamine coating protocol and characterized the surface properties of the polydopamine surface energy traps. Droplet operations including particle extraction, liquid dispensing, liquid shaping, and cross‐platform transfer have been demonstrated on the polydopamine surface energy trap‐enabled magnetic digital microfluidic platform in both single‐plate and two‐plate configurations. Furthermore, the detection of hepatitis B surface antigen using ELISA has been demonstrated on the new magnetic dgitial microfluidic platform. This new bioinspired magnetic digital microfluidic platform is easy to fabricate and operate, showing a great potential for point‐of‐care applications.  相似文献   

4.
Lien KY  Chuang YH  Hung LY  Hsu KF  Lai WW  Ho CL  Chou CY  Lee GB 《Lab on a chip》2010,10(21):2875-2886
The present study reports a new three-dimensional (3D) microfluidic platform capable of rapid isolation and detection of cancer cells from a large sample volume (e.g. ~1 mL) by utilizing magnetic microbead-based technologies. Several modules, including a 3D microfluidic incubator for the magnetic beads to capture cancer cells, a microfluidic control module for sample transportation and a nucleic acid amplification module for genetic identification, are integrated into this microsystem. With the incorporation of surface-modified magnetic beads, target cancer cells can be specifically recognized and conjugated onto the surface of the antibody-coated magnetic microbeads by utilizing a swirling effect generated by the new 3D microfluidic incubator, followed by isolating and purifying the magnetic complexes via the incorporation of an external magnet and a microfluidic control module, which washes away any unbound waste solution. Experimental results show that over 90% of the target cancer cells can be isolated from a large volume of bio-samples within 10 min in the 3D microfluidic incubator. In addition, the expressed genes associated with ovarian and lung cancer cells can also be successfully amplified by using the on-chip nucleic acid amplification module. More importantly, the detection limit of the developed system is found to be 5 × 10(1) cells mL(-1) for the target cancer cells, indicating that this proposed microfluidic system may be adapted for clinical use for the early detection of cancer cells. Consequently, the proposed 3D microfluidic system incorporated with immunomagnetic beads may provide a promising automated platform for the rapid isolation and detection of cancer cells with a high sensitivity.  相似文献   

5.
Choi S  Park JK 《Lab on a chip》2007,7(7):890-897
We report a microfluidic separation and sizing method of microparticles with hydrophoresis--the movement of suspended particles under the influence of a microstructure-induced pressure field. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along the lateral flows induced by the gradient. Using such movements of particles, we completely separated polystyrene microbeads with 9 and 12 microm diameters. Also, we discriminated polystyrene microbeads with diameter differences of approximately 7.3%. Additionally, we measured the diameter of 10.4 microm beads with high coefficient of variation and compared the result with a conventional laser diffraction method. The slanted obstacle as a microfluidic control element in a microchannel is analogous to the electric, magnetic, optical, or acoustic counterparts in that their function is to generate a field gradient. Since our method is based on intrinsic pressure fields, we could eliminate the need for external potential fields to induce the movement of particles. Therefore, our hydrophoretic method will offer a new opportunity for power-free and biocompatible particle control within integrated microfluidic devices.  相似文献   

6.
Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility signal resembles that from conventional magnetorelaxometry done on the same samples apart from an offset in Brownian relaxation frequency. The time dependence of the signal can be rationalized as originating from sedimented beads.  相似文献   

7.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

8.
Lee JH  Song YA  Han J 《Lab on a chip》2008,8(4):596-601
In this paper, we report a new method of fabricating a high-throughput protein preconcentrator in poly(dimethylsiloxane) (PDMS) microfluidic chip format. We print a submicron thick ion-selective membrane on the glass substrate by using standard patterning techniques. By simply plasma-bonding a PDMS microfluidic device on top of the printed glass substrate, we can integrate the ion-selective membrane into the device and rapidly prototype a PDMS preconcentrator without complicated microfabrication and cumbersome integration processes. The PDMS preconcentrator shows a concentration factor as high as approximately 10(4) in 5 min. This printing method even allows fabricating a parallel array of preconcentrators to increase the concentrated sample volume, which can facilitate an integration of our microfluidic preconcentrator chip as a signal enhancing tool to various detectors such as a mass spectrometer.  相似文献   

9.
This paper reports a novel microfluidic-chip based platform using "phase-transfer magnetophoresis" enabling continuous biomolecule processing. As an example we demonstrate for the first time continuous DNA extraction from cell lysate on a microfluidic chip. After mixing bacterial Escherichia coli culture with superparamagnetic bead suspension, lysis and binding buffers, DNA is released from cells and captured by the beads. These DNA carrying beads are continuously transported across the interfaces between co-flowing laminar streams of sample mixture, washing and elution buffer. Bead actuation is achieved by applying a time-varying magnetic field generated by a rotating permanent magnet. Flagella-like chains of magnetic beads are formed and transported along the microfluidic channels by an interplay of fluid drag and periodic magnetic entrapment. The turnover time for DNA extraction was approximately 2 minutes with a sample flow rate of 0.75 μl s(-1) and an eluate flow rate of 0.35 μl s(-1). DNA recovery was 147% (on average) compared to bead based batch-wise extraction in reference tubes within a dilution series experiment over 7 orders of magnitude. The novel platform is suggested for automation of various magnetic bead based applications that require continuous sample processing, e.g. continuous DNA extraction for flow-through PCR, capture and analysis of cells and continuous immunoassays. Potential applications are seen in the field of biological safety monitoring, bioprocess control, environmental monitoring, or epidemiological studies such as monitoring the load of antibiotic resistant bacteria in waste water from hospitals.  相似文献   

10.
A large number of microscale structures have been used to elaborate flowing control or complex biological and chemical reaction on microfluidic chips. However, it is still inconvenient to fabricate microstructures with different heights (or depths) on the same substrate. These kinds of microstructures can be fabricated by using the photolithography and wet-etching method step by step, but involves time-consuming design and fabrication process, as well as complicated alignment of different masters. In addition, few existing methods can be used to perform fabrication within enclosed microfluidic networks. It is also difficult to change or remove existing microstructures within these networks. In this study, a magnetic-beads-based approach is presented to build microstructures in enclosed microfluidic networks. Electromagnetic field generated by microfabricated conducting wires (coils) is used to manipulate and trap magnetic beads on the bottom surface of a microchannel. These trapped beads are accumulated to form a microscale pile with desired shape, which can adjust liquid flow, dock cells, modify surface, and do some other things as those fabricated microstructures. Once the electromagnetic field is changed, trapped beads may form new shapes or be removed by a liquid flow. Besides being used in microfabrication, this magnetic-beads-based method can be used for novel microfluidic manipulation. It has been validated by forming microscale dam structure for cell docking and modified surface for cell patterning, as well as guiding the growth of neurons.  相似文献   

11.
Tsai SS  Griffiths IM  Stone HA 《Lab on a chip》2011,11(15):2577-2582
We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. In the experiments we systematically study the dependence of the beads' deflection on bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting.  相似文献   

12.
We describe a simple method to fabricate an array of polystyrene microbeads (PS μbeads) conjugated with an elastin-like polypeptide (ELP) on a glass surface using a removable polymer template (RPT). A thin layer of adhesive was spun-cast on glass and cured by UV radiation. Micropatterns of an RPT were then transferred onto the surface by microcontact printing. The adhesion of PS μbeads on the surface depended on the adhesion performance of the adhesive layer, which could be adjusted by irradiation time. An array of PS μbeads conjugated with ELP was used for a smart immunoassay of prostate-specific antigen (PSA), a cancer marker. By controlling the phase transition of ELP molecules, PSA molecules were selectively adhered or released from the bead surface. The selective and reversible binding of PSA molecules on the bead surface was characterized with fluorescence microscopy.  相似文献   

13.
Ramadan Q  Gijs MA 《The Analyst》2011,136(6):1157-1166
Simultaneous washing and concentration of functionalized magnetic beads in a complex sample solution were demonstrated by applying a rotational magnetic actuation system to a microfluidic chip under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to the fluidic channel carrying a magnetic bead suspension allows trapping and releasing of the beads along the fluidic channel in a periodical manner. Each trapping and releasing event resembles one washing cycle. A purification efficiency of magnetic beads out of a mixed magnetic and non-magnetic bead sample solution of 83±4% at a flow rate of 0.5 μL min(-1), and a magnetic bead recovery or concentration efficiency of 91±5% were achieved using a flow rate of 0.2 μL min(-1). The detection performance of the device was experimentally evaluated with two different bioassays, using either streptavidin-coated magnetic beads in combination with biotinylated fluorescent isothiocyanate (FITC), or a mouse antigen (Ag)-antibody (Ab) system.  相似文献   

14.
The binding between glucose residues and wheat germ agglutinin (WGA) on thionine/glucose-modified magnetic microbeads was evaluated using voltammetry. Thionine is an electroactive compound and has two amino groups. Thionine was immobilized to magnetic beads via cross-linking of the amino groups on the beads with an amino group on thionine. Glucose was bound to the other amino group of thionine via the formation of a Schiff base. The beads were only several micrometers in size the same size, as cells. WGA-binding to glucose on the bead surface blankets the thionine moiety. Thus, WGA-binding could be detected as a decrease in peak current of the thionine moiety.  相似文献   

15.
This article describes the development and the examination of surface coatings that suppress the adhesion between glass surfaces and polymer microspheres. Superparamagnetic doping allowed for exerting magnetic forces on the microbeads. The carboxyl functionalization of the polymer provided the means for coating the beads with polyethylene glycol (PEG) with different molecular weight. Under gravitational force, the microbeads settled on glass surfaces with similar polymer coatings. We examined the efficacy of removing the beads from the glass surfaces by applying a pulling force of ~1.2 pN. The percent beads remaining on the surface after applying the pulling force for approximately 5 s served as an indication of the adhesion propensity. Coating of PEG with molecular weight ranging between 3 and 10 kDa was essential for suppressing the adhesion. For the particular substrates, surface chemistry and aqueous media we used, coatings of 5 kDa manifested optimal suppression of adhesion: that is, only 3% of the microbeads remained on the surface after applying the pulling magnetic force. When either the glass or the beads were not PEGylated, the adhesion between them was substantial. Addition of a noncharged surfactant, TWEEN, above its critical micelle concentrations (CMCs) suppressed the adhesion between noncoated substrates. The extent of this surfactant-induced improvement of the adhesion suppression, however, did not exceed the quality of preventing the adhesion that we attained by PEGylating both substrates. In addition, the use of surfactants did not significantly improve the suppression of bead-surface adhesion when both substrates were PEGylated. These findings suggest that such surfactant additives tend to be redundant and that covalently grafted coatings of PEGs with selected chain lengths provide sufficient suppression of nonspecific interfacial interactions.  相似文献   

16.
Poly(dimethylsiloxane) (PDMS) stamps are widely used in soft lithographic methods. They are powerful tools for obtaining structures of soft material in the micrometer to nanometer range by printing techniques. In this contribution, a new application of h-PDMS stamps for nanobead deposition is introduced. Magnetite-polysaccharide particles of an average diameter of 150 nm are used. They can be biologically functionalized by attaching various molecular groups. Deposition of these particles on a carrier substrate results in well-reproducible structures. This is achieved by means of PDMS stamps with different patterns using a microfluidic approach on one hand and a printing approach on the other hand. Furthermore, magnetic substrates with particular domain structures have been used. The beads can then be arranged in rather complicated but well-defined geometrical structures along the domain walls. The magnetic interaction considerably increases the adhesion of the beads to the carrier substrate. All involved materials are biocompatible. Thus the setup can be used in cell culture experiments in order to investigate influences of different particle-bound proteins and particle patterns on cell growth and vitality.  相似文献   

17.
This paper describes a model of the motion of superparamagnetic beads in a microfluidic channel under the influence of a weak magnetic field produced by an electric current passing through a coplanar metal wire. The model based on the conventional expression for the magnetic force experienced by a superparamagnetic bead (suspended in a biologically relevant medium) and the parameters provided by the manufacturer failed to match the experimental data. To fit the data to the model, it was necessary to modify the conventional expression for the force to account for the non-zero initial magnetization of the beads, and to use the initial magnetization and the magnetic susceptibility of the beads as adjustable parameters. The best-fit value of susceptibility deviated significantly from the value provided by the manufacturer, but was in good agreement with the value computed using the magnetization curves measured independently for the beads from the same vial as those used in the experiment. The results of this study will be useful to researchers who need an accurate prediction of the behavior of superparamagnetic beads in aqueous suspensions under the influence of weak magnetic fields. The derivation of the force on a magnetic bead due to a magnetic field also identifies the correct treatment to use for this interaction, and resolves discrepancies present throughout the literature.  相似文献   

18.
We developed a novel microfluidic cell culture device in which magnetic beads repetitively collide with osteoblast cells, MC3T3‐E1, owing to attractive forces generated by pulsed electromagnetic fields and consequently the cells were physically stimulated by bead impacts. Our device consists of an on‐chip microelectromagnet and a microfluidic channel which were fabricated by a microelectromechanical system technique. The impact forces and stresses acting on a cell were numerically analyzed and experimentally generated with different sizes of bead (4.5, 7.6 and 8.4 μm) and at various pulse frequencies (60 Hz, 1 kHz and 1 MHz). Cells were synchronized at each specific phase of the cell cycle before stimulation in order to determine the most susceptible phase against bead impacts. The cells were stimulated with different sizes of bead at various pulse frequencies for 1 min at G1, S and G2 phases, respectively, and then counted immediately after one doubling time. The growth rate of cells was highly accelerated when they were stimulated with 4.5 μm beads at G1 phase and a pulse frequency of 1 MHz. Almost all of the cells were viable after stimulation, indicating that our cell stimulator did not cause any cellular damage and is suitable for use in new physical stimulus modalities.  相似文献   

19.
Binding of wheat germ agglutinin (WGA) on glucosamine-modified magnetic microbeads was investigated with voltammetry. A magnetic bead was considered as a cell, and the beads with amino groups were modified with the sugar by using a cross-linking reagent. To evaluate the binding, glucose labeled with an electroactive daunomycin was prepared as a probe. After WGA and the beads were mixed in 0.1 M phosphate buffer (pH 7.0), the labeled glucose was added to the solution. The binding was monitored from the changes in the electrode response of labeled glucose because the labeled glucose was held to the binding site of WGA for the sugar. In contrast, other lectin not having the binding site to glucosamine or glucose was incubated with the glucosamine-modified beads. As a result, the change of peak current was not observed. Therefore, it is clear that the binding of WGA to glucosamine moiety on the bead surface selectively takes place. This method would be powerful for evaluation of interaction between protein and sugar chain existing at cell surface.  相似文献   

20.
A new fabrication process is described allowing rapid prototyping of multilayer microfluidic chips using commercial thiolene optical adhesives. Thiolene monomer liquid is photopolymerized across transparency masks to obtain partially cured patterns supported on thin polyethylene sheets. The patterns are easily laminated and transferred to a substrate due to the elastomeric nature and adhesiveness of partially cured thiolene. The process characteristics are evaluated by realizing several test structures and fluidic chips. As an example of application, the operation of a microfluidic bead array sensor for pH measurements is then described in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号