首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid-phase microextraction (SPME) device was used as a time-weighted average (TWA) sampler for ethylene oxide. Carboxen/polydimethylsiloxane (CAR/PDMS) fiber was used and hydrogen bromide (HBr) was loaded onto the fiber. The SPME fiber assembly was then inserted into PTFE tubing to improve the wearer's acceptance as a diffusive sampler. Known concentrations of ethylene oxide around the threshold limit values (TLVs)/time-weighted average and specific relative humidities (RHs) were generated by syringe pumps in a dynamic generation system. Ethylene oxide in gas bags were also generated. An exposure chamber was designed to allow measurement of face velocities, temperatures, exposing vapor concentrations, and RHs. Gas chromatography-mass spectrometry (GC-MS) was used for sample analysis. The appropriate adsorption time for SPME coating HBr was found to be 30 s and the desorption time for 2-bromothanol formed after sampling was determined to be 5 min. The experimental sampling constant of the sampler was found to be (2.96 +/- 0.09) x 10(-2) cm3/min, while face velocity (0-0.25 m/s) as well as RHs (10-80%) were not expected to have effects on the sampler.  相似文献   

2.
A solid-phase microextraction (SPME) device was used as a time-weighted average sampler for n-valeraldehyde. The SPME device was first modified to improve the wearer's acceptance as a passive sampler. Then a poly(dimethylsiloxane)-divinylbenzene fiber was used and O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was loaded onto the fiber. Vapors of known concentrations around the threshold limit values time-weighted average of n-valeraldehyde and specific relative humidities (RHs) were generated by syringe pumps in a dynamic generation system. n-Valeraldehyde vapors in gas bags were also generated. An exposure chamber was designed to allow measurement of face velocities, temperatures, exposing vapor concentrations, and RHs. Gas chromatography with flame ionization detection was used for sample analysis. The appropriate adsorption time for SPME coating PFBHA was determined to be 2 min and the desorption time for oxime formed after sampling was optimized to be 2 min. The experimental sampling constant was found to be (3.86+/-0.13) x 10(-2) cm3/min and face velocity was not expect to have effect on the sampler.  相似文献   

3.
Furan may be formed in food under heat treatment and is highly suspected to appear in indoor air. The possible exposure to indoor furan raises concerns because it has been found to cause carcinogenicity and cytotoxicity in animals. To determine airborne furan, solid-phase microextraction (SPME) technique was utilised as a diffusive sampler. The Carboxen/Polydimethylsiloxane (CAR/PDMS, 75 μm) fibre was used, and the SPME fibre assembly was inserted into a polytetrafluoroethene tubing. Furan of known concentrations was generated in Tedlar gas bags for the evaluation of SPME diffusive samplers. After sampling, the sampler was inserted into the injection port of a gas chromatograph coupled with a mass spectrometer (GC/MS) for thermal desorption and analysis. Validation of the SPME device with active sampling by charcoal tube was performed side by side as well. The charcoal tube was desorbed by acetone before analysis with GC/MS. The experimental sampling constant of the sampler was found equal to (9.93 ± 1.28) × 10?3 (cm3 min?1) at 25°C. Furthermore, side-by-side validations between SPME device and charcoal tube showed linear relationship with r = 0.9927. The designed passive sampling device for furan has the advantages of both passive sampling and SPME technique and looks suitable for assessing indoor air quality.  相似文献   

4.
The solid phase microextraction (SPME) device with the polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used as a passive sampler for ambient ozone. Both O-2,3,4,5,6-(pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and 1,2-di-(4-pyridyl)ethylene (DPE) were loaded onto the fiber before sampling. The SPME fiber assembly was then inserted into a PTFE tubing as a passive sampler. Known concentrations of ozone around the ambient ground level were generated by a calibrated ozone generator. Laboratory validations of the SPME passive sampler with the direct-reading ozone monitor were performed side-by-side in an exposure chamber at 25 °C. After exposures, pyriden-4-aldehyde was formed due to the reaction between DPE and ozone. Further on-fiber derivatizations between pyriden-4-aldehyde and PFBHA were followed and the derivatives, oximes, were then determined by portable gas chromatography with electron capture detector. The experimental sampling rate of the SPME ozone passive sampler was found to be 1.10 × 10−4 cm3 s−1 with detection limit of 58.8 μg m−3 h−1. Field validations with both SPME device and the direct-reading ozone monitor were also performed. The correlations between the results from both methods were found to be consistent with r = 0.9837. Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone.  相似文献   

5.
This study examined the characteristics of a solid phase microextraction (SPME) assembly as a passive sampler to determine the short-term exposure level (STEL) of methylene chloride. Two types of SPME fibers and six sampling-related factors were chosen and nested in an L(18) Taguchi's orthogonal array. Samples were thermally desorpted and analyzed by gas chromatograph equipped with an electron capture detector (GC/ECD). The use of 85-mum Carboxen/polydimethylsiloxane (Car/PDMS) fibers resulted in greater adsorbed mass, which was highly correlated with the product of concentration and sampling time (r>0.99, p<0.0001), than 85-microm polyacrylate fibers. The sampling rate (SR) of the 85-microm Carboxen/polydimethylsiloxane fibers was not significantly affected by variations in relative humidity (0-80%) and coexistent toluene (none to 100 ppm). Variance of sampling rate was predominantly attributed to the diffusive path length (86.4%) and sampling time (5.7%). With diffusive paths of 3, 10 and 15 mm, the sampling rates of 85-microm Carboxen/polydimethylsiloxane fibers for methylene chloride were 1.4 x 10(-2), 7.7 x 10(-3) and 5.1 x1 0(-3)mL min(-1), respectively. The measured sampling rates were greater than the theoretical values, and decreased with increment of sampling time until they came to constant.  相似文献   

6.
Two types of passive samplers differing in their geometry (OVM 3500 by 3M, ORSA 5 by Dräger) were compared with respect to their suitability for typical environmental indoor and outdoor VOC concentrations. Benzene, toluene, o-, m-, p-xylene, ethylbenzene, tetrachloroethene, trichloroethene, nonane and ethyl acetate were representatively analyzed by dual-column capillary gas chromatography with tandem ECD-FID detection. There was a good correlation between the results obtained with OVM 3500 and ORSA 5 monitors indicating that both monitors can be used for this kind of application. The ratio between the results for indoor air sampling with OVM 3500 and ORSA 5 monitors was between 0.89 and 1.14 showing no systematic variation. For outdoor air sampling the ratio was between 1.06 and 1.26 indicating that the results obtained with OVM 3500 monitors were slightly higher. Reproducibility was slightly better when using ORSA 5 monitors. But, due to the higher sampling rates which are a result of the larger cross-sectional area, signal-to-noise ratios obtained with OVM 3500 monitors were between six to nine times higher than those of ORSA 5 samplers. Blank values of the unexposed samplers were comparable for both sampler types. As a consequence, detection limits were by a factor of 1.5 to 4 better for OVM 3500 monitors.  相似文献   

7.
The stability of trapped materials stored in thermally desorbable monitors is not essential. When monitors are stored in defined conditions and the decay is well characterized, a decay curve and a corresponding correction curve with 95% confidence envelopes can be established. Even if “wild” or outlier data are present, the robust and resistant regression methods described and illustrated enable reasonable curves and confidence envelopes to be obtained. The methods are applied to validation of the Simtec Adsorbs Type CM ethylene oxide monitor stored at 4°C after diffusive sampling of 2 ppm (3.6 mg m?3) ethylene oxide for 4 h. The monitors are shown to comply with the U.S. OSHA requirements for up to eleven days of storage.  相似文献   

8.
Two types of passive samplers differing in their geometry (OVM 3500 by 3M, ORSA 5 by Dr?ger) were compared with respect to their suitability for typical environmental indoor and outdoor VOC concentrations. Benzene, toluene, o-, m-, p-xylene, ethylbenzene, tetrachloroethene, trichloroethene, nonane and ethyl acetate were representatively analyzed by dual-column capillary gas chromatography with tandem ECD-FID detection. There was a good correlation between the results obtained with OVM 3500 and ORSA 5 monitors indicating that both monitors can be used for this kind of application. The ratio between the results for indoor air sampling with OVM 3500 and ORSA 5 monitors was between 0.89 and 1.14 showing no systematic variation. For outdoor air sampling the ratio was between 1.06 and 1.26 indicating that the results obtained with OVM 3500 monitors were slightly higher. Reproducibility was slightly better when using ORSA 5 monitors. But, due to the higher sampling rates which are a result of the larger cross-sectional area, signal-to-noise ratios obtained with OVM 3500 monitors were between six to nine times higher than those of ORSA 5 samplers. Blank values of the unexposed samplers were comparable for both sampler types. As a consequence, detection limits were by a factor of 1.5 to 4 better for OVM 3500 monitors. Received: 18 August 1998 / Revised: 6 October 1998 / Accepted: 15 October 1998  相似文献   

9.
A passive “badge-type” sampling device for the determination of gaseous ammonia was developed. The collection substrate is phosphoric acid. The sampler can be used for outdoor and indoor sampling of ammonia in the concentration range from 0.05 μg/m3 to 10 mg/m3. The performance was tested in the laboratory and in the field against an annualar denuder, a filter pack and an impinger technique. The intercalibration showed that the passive sampler compares very well with active samplers (r2=0.99; k=1.05). The average reproducibility of the sampler was 8%. Hence the badge sampler is well suited for the determination of ammonia in a wide range of concentrations and particularly for application under rural background conditions. The sampling rate of the device was calculated according to a simple multi-layer model.  相似文献   

10.
Summary A diffusive sampler for the large scale routine determination of airborne formaldehyde was developed. Formaldehyde is sampled in a badge-type passive sampler containing a 2,4-dinitrophenylhydrazine-coated filter paper as sampling layer. Formaldehyde is immediately converted to the corresponding hydrazone, which, after desorption with acetonitrile, is separated and quantified by gradient HPLC using UV detection at 345 nm. Calibration was done via an active sampling method and showed an excellent, time- and concentration-independent linear performance of the diffusive samplers. A detection limit of about 0.05 ml/m3·h (ppm·h) and a relative standard deviation of about 10% ensured a good analytical reliability. By testing the influence of air movements at the sampler surface, a minimum air velocity of 10 cm/s was found necessary to ensure representative sampling.  相似文献   

11.
A new diffusion-based solid-phase microextraction (SPME) time-weighted average (TWA) field water sampling device was developed and investigated by field trial. The sampler is constructed with copper tube and caps and a commercial SPME fiber assembly. The device possesses all advantages of SPME; it is solvent-free, reusable, combines sampling, isolation and enrichment into one step, and the fiber can be directly injected into a gas chromatograph for analysis with a commercial SPME fiber holder, without further treatment. Field trials in Laurel Creek (Waterloo, Ont., Canada) and Hamilton Harbour (Hamilton, Ont., Canada) illustrated that the device is durable, easy to deploy, and the mass uptake of the device is independent of the face velocity. The device provides good precision [relative standard deviations (RSDs) are less than 20%] and the data obtained with this device are quite comparable to those obtained with the spot sampling method, which demonstrates that the newly developed SPME water sampling device is suitable for long-term monitoring of organic pollutants in water.  相似文献   

12.
The evaluation of a badge-type diffusive sampler for measuring formaldehyde using 3-methyl-2-benzothiazolinone hydrazone (MBTH) was investigated. On average, the formaldehyde concentration in blanks was reduced by approximately 31% by cleaning procedures. The cleaning techniques did not significantly differ in effectiveness. The maximum sampling rate was 22.4 +/- 3.5 mL min(-1) at MBTH concentrations of 0.05%. The formaldehyde concentration in blanks did not appreciably increase over a period of about 1 month at room temperature, and was 0.36 +/- 0.03 microg, with a relative standard deviation of 8%. The diffusive sampler had good precision and accuracy for measuring formaldehyde in indoor environments. For a 24-h exposure time, the limits of detection and quantification calculated with the field blanks were 9.7 and 13.8 ppb, respectively. The minimum exposure times were calculated based on the measured and calculated limits of quantification, the sampling rate, and the atmospheric formaldehyde concentration. The capacity of the diffusive sampler with 0.5% MBTH was 3 ppm h(-1), approximately 1.5-times the capacity when the MBTH concentrations were 0.05%.  相似文献   

13.
The design and evaluation of a portable diffusive sampler for isocyanates is described. The sampler employs dibutylamine (DBA) loaded onto 60-microm polydimethylsiloxane-divinylbenzene (PDMS-DVB) solid-phase microextraction (SPME) fibers. The DBA-isocyanate derivative is then desorbed by sonication and analyzed by LC-MS using atmospheric pressure chemical ionization (APCI). The samplers are calibrated (i.e. the uptake rate is calculated) by exposing them to a known concentration of hexamethylene diisocyanate (HDI) in a standard gas-generation chamber. The uptake rate for the proposed method, at room temperature (25 degrees C), is 1.13 pg (min ppb(v))(-1) and the method detection limit is 3.2 microg m(-3), equivalent to less than 10% of the airborne time-weighted average (TWA) exposure limits recommended by both the National Institute for Occupational Safety and Health (NIOSH) and the American Conference of Governmental Industrial Hygienists (ACGIH). Practical points that should be considered when using the SPME device as a diffusive sampler are discussed.  相似文献   

14.
A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography–mass spectrometry (HS-GC–MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).  相似文献   

15.
An electric drill coupled with a solid-phase microextraction (SPME) polydimethylsiloxane (PDMS) fiber or a PDMS thin film was used for rapid sampling of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Laboratory experiments demonstrated that the sampling rates of SPME fiber and thin film can be predicted theoretically. Compared with the SPME fiber, the PDMS thin film active sampler exhibited a higher sampling rate and much better sensitivity due to its higher surface-to-volume ratio and its larger extraction phase volume. The amount of the analytes extracted by the thin film was around 100 times higher than those obtained by fiber, for both 5 min rapid sampling and equilibrium extraction. A new thin film active sampler was then developed for rapid on-site water sampling. The sampling kit included a portable electric drill, a copper mesh pocket, a piece of thin film, and a liner. Laboratory experiments indicated that the sampling remained in the linear uptake phase with this sampler to 8 min for the PAHs. Field test illustrated that this novel sampler was excellent for rapid on-site water sampling due to its short sampling period, high sampling efficiency and durability The thin film sampling kit facilitates on-site sampling, sample preparation, storage and transport. This new sampler is more user-friendly and easier to commercialize than previous samplers.  相似文献   

16.
A solid-phase microextraction (SPME) method was developed for air monitoring of organic solvents frequently used in chemical laboratories (namely pentane, dimethyl ether, acetone, acetonitrile, dichloromethane, hexane, ethylacetate, tetrahydrofurane, cyclohexane, benzene, and toluene). SPME sampling conditions and chromatographic separation were optimised. Linearity of response for each component of the mixture was tested. Standard solutions containing all the compounds, at three different concentrations, were analysed in triplicate and the relative standard deviations (RSDs) were calculated. The method was applied to the monitoring of indoor air in a research chemical laboratory. An SPME fibre was used as a sampling device inside the laboratory. Moreover an SPME fibre was used as a portable sampling device in order to determine the effective human exposure. Comparison of the portable and fixed sampling device showed differences in the amount of solvents associated with activities performed nearby.  相似文献   

17.
This paper examines the results of experiments carried out in an exposure chamber to determine the wind effects on the performance of various diffusive sampler types commonly used for measuring gaseous pollutants in air. The resistance to wind of six diffusive samplers, two Palmes tubes, a badge with diffusion membrane, the EMD sampler and two radial diffusive samplers for different pollutants was compared in a range of velocities from 0 to 300?cm?s?1. For all diffusive samplers tested, an increase in uptake rate was observed with increased air velocity usually following a logarithmic function. The consequences are an underestimation in the concentration measured by the diffusive samplers for low wind velocities below 30?cm?s?1 and conversely an overestimation from 60?cm?s?1. The magnitude of wind effects depends on diffusive sampler type and exceeds an uptake rate variation of ±20% for the axial diffusion tubes and the EMD sampler. With regard to the characteristics of each diffusive sampler, the dependence of uptake rate on wind velocity was analysed and discussed. The radial diffusive samplers for benzene and particularly the ones having a large and thick porous membrane appear to be the most effective design to minimise the influence of air velocity on passive sampling.  相似文献   

18.
    
A passive badge-type sampling device for the determination of gaseous ammonia was developed. The collection substrate is phosphoric acid. The sampler can be used for outdoor and indoor sampling of ammonia in the concentration range from 0.05 g/m3 to 10 mg/m3. The performance was tested in the laboratory and in the field against an annualar denuder, a filter pack and an impinger technique. The intercalibration showed that the passive sampler compares very well with active samplers (r2=0.99; k=1.05). The average reproducibility of the sampler was 8%. Hence the badge sampler is well suited for the determination of ammonia in a wide range of concentrations and particularly for application under rural background conditions. The sampling rate of the device was calculated according to a simple multi-layer model.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

19.
The possibility of sampling the free and particle‐bound concentrations of organic compounds was studied using two different sampling techniques at the same time: needle trap device (NTD) and solid‐phase microextraction (SPME). In this study, a mosquito coil was used to produce gaseous (free) and particle‐bound compounds. Allethrin, the active ingredient in mosquito coils, was chosen as the target analyte. Under the same sampling conditions, the amount of allethrin extracted from the mosquito‐coil smoke was higher for the NTD compared to the SPME fiber, while the extracted amounts were almost the same for both devices when sampling gaseous samples of allethrin. These results can be explained by the fact that the SPME fiber can only extract free molecules (based on diffusion), whereas the NTD, an exhaustive sampling device, collects both free and particle‐bound allethrin. Breakthrough for NTD and carryover for both NTD and SPME were negligible under the given sampling and desorption conditions.  相似文献   

20.
Optimization of the SPME device design for field applications   总被引:2,自引:0,他引:2  
Solid Phase Microextraction (SPME) is a powerful tool for field investigations. With the help of a portable gas chromatograph it can be used for fast analysis directly on-site, or it can be utilized for field sampling and then transported to the laboratory for instrumental analysis. In the latter case, it is important for the reliability of the results that losses of volatiles and contamination of the fiber during storage and transport are minimized. A number of dedicated devices, designed and built for SPME field sampling and storage, have been developed and tested. Sealing capacity of the prototypes was investigated by storing compounds ranging in volatility from methylene chloride to 1,3-dichlorobenzene on selected SPME fibers (100 μm PDMS, 65 μm PDMS/DVB and 75 μm Carboxen/PDMS) at different temperatures. Significant differences were noticed in storage capacity from coating to coating. A comparison between the field samplers optimized in this study and the field sampler commercially available from Supelco revealed advantages and limitations of each of the designs. A gas-tight valve syringe (50 μL SampleLock by Hamilton), modified in order to accommodate the SPME fiber, had the best storage capacity for very volatile compounds. With this device, over 80% of the initial amount of methylene chloride was retained by the 100 μm PDMS fiber after 24 h of refrigerated storage, which is a very good result considering that the PDMS coating is characterized by very low storage capacity for volatiles. Field sampling investigations with the SPME prototypes confirmed the usefulness of these devices for field analysis. Received: 9 November 1998 / Accepted: 15 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号