首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大芯径晶体波导可吸收更高功率的泵浦光,能够实现更高的输出功率,同时在锁模运行时芯层中的峰值功率密度相对较低,而且减少了非线性效应的积累。基于此,构建了一种基于Yb:YAG大芯径晶体方波导的被动锁模皮秒激光器。实验中,首先使用高反镜替代半导体可饱和吸收镜(SESAM),在较高的泵浦功率下调节晶体波导的位置和角度以实现泵浦光与波导芯层的匹配;然后,仔细调节球面反射镜的角度,使信号光耦合进波导芯层中以尽量减小腔内的损耗。所设计的激光器采用折叠腔结构,在腔内没有色散补偿器件的情况下,实现了平均功率为10.2 W、脉冲宽度为65 ps、重复频率为30.15 MHz、单脉冲能量为0.34μJ的激光输出。  相似文献   

2.
报道了室温下级联中红外Er:YAG脉冲激光器。通过实验观测到级联发射的特征波长为1469 nm,确定了激发态吸收的特征波长为1676 nm。采用掺杂浓度(原子数分数)分别为7.5%和10%的两种Er:YAG晶体,通过实验对比了级联与非级联条件下的中红外输出能量。掺杂浓度为7.5%的Er:YAG中红外激光的最大单脉冲能量由非级联时的0.62 m J提高至级联时的0.99 m J,提高了约59.7%;掺杂浓度为10%的Er:YAG中红外激光的最大单脉冲能量由非级联时的1.04 m J提高至级联时的1.51 m J,提高了约45.2%。实验结果表明,常温低掺杂Er:YAG晶体可实现级联输出,并且级联有助于中红外激光单脉冲能量的提高。  相似文献   

3.
大功率准连续Nd:YAG陶瓷激光器研究   总被引:4,自引:4,他引:0  
采用侧面环绕均匀排布的紧凑型抽运结构,实现了激光二极管阵列侧向抽运Nd∶YAG陶瓷激光器高效率激光输出。理论计算得到谐振腔输出镜的最佳输出耦合透射率为22.2%,并在输出耦合镜透射率为22%的条件下,用掺杂原子数分数为1%,尺寸为5mm×75mm的Nd∶YAG陶瓷棒,获得了平均功率大于230W的准连续1064nm激光输出,其光光效率和斜率效率分别高达52.4%和61%。并测得输出激光脉冲宽度为160μs,光谱线宽略小于0.8nm,光束发散角为16mrad。实验结果显示,Nd∶YAG陶瓷激光器输出功率Nd∶YAG单晶激光器相当。  相似文献   

4.
设计了四程泵浦的Yb:YAG薄片激光器。晶体掺杂原子数分数为10%,几何尺寸为直径10 mm、厚340 μm,提出了Cr/Au金属化方案, 采用铟焊工艺将其焊接到微通道水冷热沉上。耦合系统为四程泵浦结构,球面镜规格为直径30 mm、曲率半径50 mm。利用LightTools软件模拟计算了泵浦光斑半径,选用曲率半径200 mm输出镜以使泵浦光斑半径与基模光斑半径比符合模式匹配原则。在激光二极管阵列泵浦功率为18.73 W 时,获得了最高功率为4.81 W的1 030 nm连续激光输出,光-光转换效率为25.7%。  相似文献   

5.
通过不同Yb3+掺杂浓度(5%~30%,原子数分数)的Yb∶YAG晶体的阴极射线发光谱、衰减时间、光输出及其温度依赖关系的测量,研究了Yb∶YAG晶体的闪烁性能。不同Yb3+掺杂浓度的Yb∶YAG晶体具有不同的光输出和猝灭温度,光输出随Yb3+掺杂浓度的增大而降低,猝灭温度则随掺杂浓度的增大而升高。室温下Yb∶YAG晶体的发光衰减时间较短,均小于50 ns。Yb3+掺杂浓度为5%的Yb∶YAG晶体具有较高的光输出和较低的猝灭温度。  相似文献   

6.
针对激光二极管端面泵浦圆片Yb∶YAG晶体产生的热效应问题,以实际工作特点为基础,通过热传导理论分析了热效应。分析了不同泵浦功率、超高斯阶次、光斑半径、晶体尺寸因素对变热导率圆片Yb∶YAG晶体温度场的影响。研究结果表明,使用泵浦功率为60W、超高斯阶次为5、光斑半径为400μm的泵浦光对含质量分数为8%、晶体半径为4mm、厚度为0.5mm的圆片Yb∶YAG晶体进行泵浦,在将晶体的热导率分别视为常量和变量时,泵浦端面获得的最大温升分别为52.15℃和59.51℃。根据计算结果,设计了适合的激光器热稳腔,能充分抑制激光器产生的热效应问题。  相似文献   

7.
采用中心波长为940nm的激光二极管泵浦,实现了Yb:YAG薄片的Cr4+:YAG被动调Q激光输出.Yb:YAG薄片掺杂Yb3+离子浓度为10%,厚度为500μm.理论上计算了Yb:YAG薄片在直接水冷方式与不同厚度SiC冷却方式下的温度分布.实验中采用厚度800μm的SiC冷却方式,获得了最高功率2.8 W的1 030nm连续激光输出,输出功率相比直接水冷方式提高了40%.通过Degnan理论优化了被动调Q晶体Cr4+:YAG的初始透过率和输出耦合镜,采用初始透过率为93%的Cr4+:YAG晶体和透过率为10%的输出耦合镜,在800μm SiC冷却方式下,获得了平均输出功率1.95 W、单脉冲能量1.2mJ、脉冲宽度74ns、重复频率1.6kHz的稳定调Q脉冲输出,斜效率为18.1%.光束质量因子M2x=1.622,M2y=1.616.  相似文献   

8.
多线阵半导体激光器的单光纤耦合输出   总被引:4,自引:1,他引:3  
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2mm,单个发光单元宽度为100μm,发光单元周期为500μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195W,光纤端面功率密度达到1.55×105W/cm2.  相似文献   

9.
设计了一台二极管泵浦的具有新型四通泵浦结构及接触式水冷装置的Yb∶YAG薄片激光器.激光泵浦源采用中心波长为940nm的二极管激光器,利用多模光纤进行耦合输出.YAG晶体Yb3+离子掺杂浓度为10%,几何尺寸为直径10mm,厚度500μm.激光晶体的散热装置采用自来水直接冷却,自来水通过铜热沉中打通的V型槽与薄片晶体直接接触.泵浦耦合系统采用聚焦透镜和一对直角棱镜的组合实现四通泵浦,聚焦透镜规格为直径50mm,焦距50mm.模拟了谐振腔的稳定性及不同腔长条件下所对应的激光光斑半径,设计了不同腔型的Yb∶YAG薄片激光器.在F-P腔中采用透过率为5%的输出耦合镜,获得了最高功率为3.28W的1 031nm连续激光输出,光束质量因子M2x=1.79,M2y=1.86,斜效率为20.5%.  相似文献   

10.
激光二极管端面抽运的棒状Yb:YAG激光器   总被引:5,自引:1,他引:4  
分析了影响激光二极管抽运Yb:YAG激光器调Q效率的参量,推导了激光二极管端面脉冲抽运Yb:YAG晶体的速率方程,解出了双程抽运情况下的净抽运量子产率。利用数值计算方法,模拟了净抽运量子产率与晶体长度,抽运光脉冲宽度等关系,得出晶体长度的优化可以提高Yb:YAG激光器输出效率。计算了词Q Yb:YAG激光器的最大增益、最大储能,分析了放大自发辐射对于Yb:YAG能量存储的影响。同时给出了激光二极管端面抽运调Q Yb:YAG优化设计方法。这些分析和计算为实际器件的研制提供参考。  相似文献   

11.
Yb∶YAG薄片激光介质的温度效应   总被引:1,自引:0,他引:1  
研究了Yb∶YAG薄片激光器中影响激光介质温度的几个因素。理论和实验均表明减薄Yb∶YAG片并增加抽运光被YAG片吸收的次数 ,是降低激光介质温度、提高激光器输出功率和效率的有效途径。用 0 .35mm厚的Yb∶YAG薄片获得 15 .9W的 1.0 3μm激光输出 ,斜率效率超过 40 %。  相似文献   

12.
15W光子晶体光纤激光器的研究   总被引:4,自引:1,他引:3  
利用光子晶体光纤在原来输出功率3 4W的基础上,研制成功了激光输出15W的光子晶体光纤激光器,实验装置为典型的F P腔结构,分别采用二色镜和光纤端面作为高反射腔镜和激光输出腔镜 一端二色镜紧贴光纤的入射端面,它对1 0 5 μm~1 1μm波段信号光的反射率大于99% ,对976nm泵浦光透射率为93% ;另一端利用光纤端面4 %Fresnel反射作为输出端反馈与二相色镜构成了线形谐振腔 实验采用掺Yb3+ 双包层光子晶体光纤,长度为2 0m 内包层为2 0 0 μm ,外包层为380 μm ,Yb2 O3浓度为1 5mol % 当泵浦功率为6 0W时,获得了15W 1 1μm的激光输出 15W光…  相似文献   

13.
利用重复频率为1kHz,中心波长为800nm,脉冲宽度为120fs的飞秒激光在掺Yb3+磷酸盐玻璃中刻写光波导,测试了不同参数下刻写的波导的导光模式,研究了写入速度和写入脉冲能量对模场直径、波导折射率的影响,给出了波导形成的写入窗口范围,对比测试了激光作用区域和未作用区域的荧光光谱特性。实验结果表明,在采用20×显微物镜,写入速度为20μm/s,写入脉冲能量为1.8μJ时,所得到的光波导在976nm波段模场直径为20μm,波导区域折射率改变为2.7×10-4,飞秒激光作用区域的荧光光谱与基质的荧光光谱几乎完全重合,荧光特性在飞秒激光作用后保持良好。利用双色镜和2%的输出耦合镜构成了法布里-珀罗(F-P)腔掺Yb3+波导激光器,获得了波长为1031nm的连续激光输出,激光功率为2.9mW。  相似文献   

14.
Yb :YAG晶体的闪烁特性   总被引:1,自引:0,他引:1  
通过不同Yb3+掺杂浓度(5%~30%,原子数分数)的Yb:YAG晶体的阴极射线发光谱、衰减时间、光输出及其温度依赖关系的测量,研究了Yb:YAG晶体的闪烁性能.不同Yb3+掺杂浓度的Yb:YAG晶体具有不同的光输出和猝灭温度,光输出随Yb3+掺杂浓度的增大而降低,猝灭温度则随掺杂浓度的增大而升高.室温下Yb:YAG晶体的发光衰减时间较短,均小于50ns.Yb3+掺杂浓度为5%的Yb:YAG晶体具有较高的光输出和较低的猝灭温度.  相似文献   

15.
高功率光子晶体光纤激光器实验研究   总被引:3,自引:1,他引:2  
利用F-P谐振腔实验研究了高功率掺Yb3+光子晶体光纤激光器。使用915 nm和976 nm两种波长的泵浦源进行双端泵浦,在23 m长的双包层光子晶体光纤中获得了552 W的连续单模激光输出。该激光器的斜率效率约为76%,光-光转换效率为56%,光谱中心波长为1 078 nm,光束质量平方因子为1.2。  相似文献   

16.
激光二极管抽运(Tm,Ho):YLF微片激光器的实验研究   总被引:4,自引:0,他引:4  
从理论上分析了准三能级(Tm,Ho):YLF晶体的增益与温度关系,晶体温度的降低和长度的缩短有利于减小重吸收损耗对激光器运行性能的影响。在室温条件下,用2.7w波长为792nm激光二极管端面抽运Tm(原子数分数0.06),Ho(原子数分数0.004.):YLF微片激光器,阈值抽运功率为450W,当入射到晶体内的激光二极管功率为1.88W时,2μm激光最大输出功率为328mW,斜率效率为22.5%,光—光转换效率达17.4%。为达到激光最佳运行条件,还探讨了激光二极管波长,抽运光偏振方向以及晶体温度对Tm,Ho激光器性能的影响。  相似文献   

17.
基于激光二极管端面泵浦Yb∶YAG棒工作特点的分析,提出了端面绝热、周边恒温的激光晶体热分析模型,采用了一种新的热传导方程求解方法,得到了超高斯光束端面泵浦Yb∶YAG棒温度场的一般解析表达式。同时分析了不同阶次、不同光斑半径、不同功率超高斯光束以及晶体参数改变时对于Yb∶YAG棒温度场分布的影响。研究结果表明,若准直聚焦到Yb∶YAG棒泵浦面42.5W的光束具有4阶超高斯强度分布时,掺Yb3+质量分数为10.0at.%、长度为2.5mm、半径为2mm的Yb∶YAG棒的泵浦面获得74.20℃的最高温升。新的热传导方程求解方法在研究激光棒温度场分布方面具有计算量小、精度高等特点。研究结果对减小激光晶体的热效应,提高全固态Yb∶YAG激光器性能提供了理论依据。  相似文献   

18.
钛宝石泵浦的Yb:YAG晶体的激光性能   总被引:1,自引:0,他引:1  
测量了Yb:YAG晶体的光谱特性,用Ar+离子泵浦钛宝石激光器作为泵浦源泵浦Yb:YAG晶体,采用平平腔设计,当输出耦合镜T1.053μm=4.26%,泵浦功率为1410mW时,得到320mW1.053μm的高效CW激光输出,斜率效率为54%,外推阈值功率为203mW。  相似文献   

19.
3.8 W光子晶体光纤喇曼激光器   总被引:2,自引:0,他引:2  
详细研究了光子晶体光纤拉曼激光器,并首次获得瓦量级的二级喇曼光连续输出.所用泵浦源为20W掺镱光纤激光器(IPG,PYL-20M),中心波长为1070.5nm.光子晶体光纤(Crystal-fiber A/S)的纤芯直径为2.1±0.3μm,在1550nm波长处的模场直径为2.8μm,非线性系数γ=11W-1km-1;包层直径为12  相似文献   

20.
折返式激光二极管侧抽运Nd:YAG激光器   总被引:3,自引:3,他引:0  
侯霞  陆雨田  胡企铨 《光学学报》2004,24(10):349-1352
提出一种明显改善激光二极管侧面直接抽运固体激光器输出光束质量的新型谐振腔——折返式谐振腔,它由三部分组成:直角棱镜、全反的腔镜以及耦合输出腔镜,采用振荡光顺次通过晶体内增益场强区的工作方式。它重叠利用不均匀增益场的对称强区,提高了晶体增益场和谐振腔基模的重叠度,达到改善器件输出光束质量和提高效率的目的。通过对受抽运晶体内的增益场分布及腔内振荡光的模拟分析以及实验测试,验证了这种谐振腔的优势。在此基础上,研制了采用准连续线阵列激光二极管抽运Nd:YAG的折返式激光器。研究比较了在不同类型谐振腔下,激光器的输出特性。例如:平-平直腔和平-平折返腔在耦合透过率为50%时的输出特性,其增益场和基模的重叠度由24%提高到53%,光-光斜效率由的20.2%提高到27.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号