首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米孔单分子检测技术是一种集操作简单、灵敏度高、检测速度快、无需标记等优点的传感检测技术,广泛应用于蛋白质检测、基因测序和标志物检测等领域。基因测序的费用、灵敏度和精度是该检测技术的发展中亟待解决的主要问题,而开发新型的纳米孔材料则是解决这些问题的关键手段。本文从纳米孔材料的选择和设计角度出发,综述了三种不同的纳米孔,即蛋白质等生物纳米孔、固态纳米孔和新型二维材料纳米孔在生物分子检测方面的应用现状,并比较了生物纳米孔与固态纳米孔的差别。本文也重点阐述了二维材料纳米孔在生物分子检测中的实验和模拟研究进展。最后,对纳米孔检测技术的发展前景进行了展望。  相似文献   

2.
生物纳米孔传感技术因其快速、低成本、无需荧光标记等优点,在化学和生物等诸多研究领域得到广泛应用,已发展成为一种新颖的、独具特色的单分子分析手段。该技术目前主要应用于DNA测序研究,同时在单分子分析领域也取得了令人瞩目的成就。该文简要介绍了生物纳米孔分析技术的原理和生物孔的种类,主要总结了近20年来生物纳米孔在DNA测序和单分子分析中的研究进展并予以了展望。  相似文献   

3.
纳米孔道分析技术是一种低成本、快速、无需标记的单分子检测技术,仅有20多年的发展历史,在DNA单分子测序领域展示出较好的应用前景,现已有商业化的产品面世且趋于成熟.越来越多的研究表明,纳米孔可作为一个通用的单分子传感器.本文综述了生物纳米孔道分析技术对蛋白质、多肽和核酸等单个分子与孔道间相互作用、动力学和热力学过程的实时监测以及多种生物大分子和金属离子的定量检测等方面的研究进展.在纳米孔技术中,电化学检测系统也十分重要,本文还特别介绍了高带宽及超低电流分辨仪器和相关软件的相关进展.  相似文献   

4.
纳米孔检测技术以其独特的优势在电分析化学领域引起广泛的关注,基于此构建的电化学传感器及电化学整流开关已被用于多种目标物分析,如单分子蛋白检测及DNA测序。纳米孔既可由生物分子制成,也可由固态材料制备。其中,固态纳米孔易于修饰,机械性能、稳定性等相对较好,应用较为广泛。纳米孔检测技术主要的输出信号为电阻脉冲和电流-电压曲线(离子整流),本文以两种输出信号为重点,详细介绍了纳米孔检测的原理和应用,总结了近年来固态单纳米孔通道在分析化学领域的发展,并对该领域未来的发展趋势和应用前景进行了展望。  相似文献   

5.
DNA和RNA上广泛存在着多种化学修饰.这些核酸修饰参与基因表达的调控,影响生长发育等生理过程,并可能会引发癌症等疾病.对核酸修饰的精准识别与定位有助于理解其功能机制,帮助相关疾病的诊断与治疗.纳米孔测序是一种新兴的单分子测序技术,可以根据修饰碱基与天然碱基之间阻孔信号的差异实现核酸序列中多种修饰的同时检测,是目前检测核酸修饰最直接的方法.本文简要介绍了纳米孔测序技术的发展和原理以及识别核酸修饰的算法工具,总结了纳米孔测序技术在核酸修饰检测中的应用,并对其发展前景进行了展望.  相似文献   

6.
纳流控作为一种新兴技术,近年来得到了广泛关注.其产生和发展伴随着新流体现象的发现和新型器件的诞生.纳米流体中独特的物质传输性质和潜在的应用引起了广泛关注.迄今为止,纳米通道器件在DNA测序、单分子传感、能源储存与转换、离子门控等方面显示出了巨大的应用前景.本文总结了仿生纳米通道的设计与制备、纳米通道功能化修饰的策略及其在生物分析中的应用研究,并思考了仿生纳米通道的发展与面临的挑战.  相似文献   

7.
光电化学生物分析是近年来新出现并发展迅速的一种分析技术,其检测原理是基于在光照下识别元件和目标分子之间的生物识别作用造成光电活性物质产生的电信号的改变,以实现对待测物的定量测定。由于其灵敏选择性检测的优点及其在生物分析中的巨大潜力,该方法吸引了较多的关注,并且在检测性能和生物传感应用等方面也取得了较大进步。本文针对光电化学生物分析中常见的四种应用领域,即直接光电化学检测、光电化学酶检测、光电化学核酸检测以及光电化学免疫分析,综述了近年来国内外在光电化学生物分析研究领域的最新进展,并对其未来发展进行了展望。  相似文献   

8.
随着核酸自组装领域的飞速发展,除了作为遗传信息的载体外,核酸成为了一种具有高操作自由度和无限可能性的功能材料.基于核酸自组装原理的DNA纳米技术凭借其强大的可编辑性已经广泛应用于生物传感、纳米材料工程、医学诊疗以及分子计算机等领域.纳米孔作为一种新兴的单分子分析技术具有高分辨、高通量、免标记等特点,近年来在基因测序、分子物理化学性质分析等领域展示出了极大的应用潜力.作为一种新型高分辨表征技术,纳米孔已经在DNA纳米技术研究中崭露头角,被用于原位追踪和分析核酸分子的自组装行为.另一方面,DNA纳米技术也为纳米孔传感所面临的技术瓶颈提供了更多样化的解决思路,如借助功能核酸(Aptamer或DNAzyme)和无酶扩增核酸分子线路实现纳米孔对待测物的特异性增敏检测.本专论旨在通过对近期纳米孔技术与核酸自组装的跨领域研究成果进行系统性回顾,总结并展望纳米孔传感领域内核酸自组装的研究进展,以期为单分子生物分析、信息检索、基因分型和临床诊断等领域提供新思路和新方法.  相似文献   

9.
纳米技术和纳米医学的研究在生物医学、疾病诊断和治疗方面显示出了巨大的应用潜力. 有机荧光分子基检测技术已被广泛的用作造影和信号转换的工具用以测定痕量的分析物. 然而, 有机荧光分子基团的降解、光漂白作用使得其荧光的稳定性受到影响, 从而限制了它们在复杂的生理环境中的应用. 无机纳米粒子因其形状、尺寸和组成的不同而具有独特且稳定的光、电、磁及催化性能, 可用作新型的生物纳米造影材料, 能很好的解决造影检测技术所面临的难题. 并且, 纳米造影材料的表面修饰则可以提高它们的在生理条件下的稳定性和靶向生物活性分子的能力.  相似文献   

10.
王晓  王星文  肖乐辉 《化学学报》2023,(8):1002-1014
纳米颗粒通常具有优异的催化性能,但由于其内在的异质性,宏观水平的表征难以确定单个纳米颗粒可靠的构效关系和潜在的催化反应机制.单分子荧光成像技术具有单分子灵敏度、高时空分辨率的优点,可以在单颗粒水平实现反应产物的超灵敏检测,因而在纳米催化领域得到了广泛应用.本文综述了单分子荧光成像的发展以及该技术在揭示单颗粒纳米催化反应机制中的应用,主要包括尺寸效应、晶面效应、表面缺陷、等离激元效应、双金属效应、活化能、纳米限域效应以及单颗粒催化通讯等方面.最后总结和展望了单分子荧光成像技术在纳米催化研究中的挑战与发展方向.  相似文献   

11.
分子机器是一种由分子构建的微型设备,在受到适当的刺激如光、温度、pH或电磁场时,它能够在分子水平上执行类似宏观机器的机械运动.然而,分子机器的研究仍面临着许多技术挑战,包括如何精确控制分子机器的运动,如何构建大规模的分子机器系统等.作为有潜力的分子自组装技术,利用DNA纳米技术可以构建复杂的刺激响应纳米机器并精确调控其在分子水平的运动.本文中,我们简单介绍了DNA纳米技术的组装原理,综述了响应DNA链置换、光、热、pH和电场等不同类型刺激的核酸框架分子机器,并探讨了它们在药物递送、构建三维等离子体光学器件以及作为生物分子标尺等方面的应用.  相似文献   

12.
郑明心  谭臻至  袁金颖 《化学进展》2022,34(11):2476-2488
Janus粒子通常由两种或两种以上不同物理或化学性质的部分组成,其结构的不对称性导致了粒子形貌和性质具有不对称性。与“静态”Janus粒子相比,具有刺激响应性的“动态”Janus粒子能够与环境发生相互作用,在外界刺激下表达特殊功能。光响应Janus粒子是一类可以在光刺激下发生特定响应的Janus粒子,其两侧不同的组成不仅可以结合多种类型的光响应性,也能与其他类型的刺激响应进行配合,从而实现对特定体系的精确调控。由于光能易于调节的特性,光响应Janus粒子可以与无机纳米团簇或有机官能团产生特定反应,具有光热效应、色彩调节、光动力治疗等独特特性。它们还可以应用于药物递送、生物传感与成像、微纳米马达和光致发光等领域,为解决生物医学和光学器件相关的问题提供了新的方法。本文主要介绍光响应Janus粒子近期发展的制备方法,并着重阐述其独特调控机理以及其在生物医药、发光材料等领域的突出应用,最后对目前该领域的发展前景做出展望。  相似文献   

13.
偶氮光响应材料在光信息存储,光学器件制造等领域具有广阔的应用前景。离子自组装技术是近几年发展起来的制备超分子功能材料的一种新方法。本文首先对偶氮光响应材料的制备方法以及离子自组装技术的基本原理做了简单的介绍。然后分4类对离子自组装方法在偶氮光响应材料制备中的应用进行了综述,主要包括带电荷小分子染料与反电荷表面活性剂组装、聚电解质与反电荷偶氮小分子组装、高支化大分子与偶氮小分子组装以及环糊精与含偶氮聚电解质组装。最后对该领域的发展趋势和研究热点进行了展望。  相似文献   

14.
基于光致异构分子构筑单分子光电子器件或分子膜器件,探究器件中分子在光诱导下构型的变化规律,并在单分子水平上探索其异构效应对电荷传输、器件光电性能的影响,对推动有关分子器件的基础应用研究至关重要.本文系统阐述近些年关于光致异构分子器件的研究成果,着重梳理了关于分子器件的制备、电荷传输机理、器件性能调控以及应用等方面的代表...  相似文献   

15.
唐诗洋  孙晓君  林丽  孙艳  刘献斌 《化学进展》2011,23(9):1973-1984
单分散介孔氧化硅纳米颗粒由于其自身的优点,在当前许多领域有着广泛的应用前景。本文综述了近十几年来单分散介孔氧化硅纳米颗粒的制备方法以及在生物材料方面的应用。在制备方法方面,根据其制备机理分为稀溶液法、微乳法、模板剂法以及向反应体系中加入不同的添加剂等方法,制备出分散性好、不同形态、孔径尺寸可调的介孔氧化硅纳米颗粒。在生物材料的应用方面,主要介绍了其在药物与生物活性分子的负载与控制释放、生物大分子的固载与分离、生物标记与临床诊断等方面的应用。  相似文献   

16.
光响应药物释放体系具有非侵入性、远程可控且时空分辨率高等特点, 在杀菌、抗癌等生物医学领域具有重要应用价值. 但目前近红外光响应的光裂解药物递送体系报道较少且光响应效率还有待提高. 本工作将稀土纳米颗粒包覆介孔二氧化硅, 逐步偶联近红外染料cypate、金刚烷胺和β-环糊精来封堵孔口, 利用cypate的自敏光氧化断键作为光响应开关, 成功构建了一种新型近红外光响应稀土上转换纳米载药系统. 该纳米载药系统负载抗生素氧氟沙星表现出极低的药物流失率和较高的808 nm光照释放效率, 并且通过控制光照时间可以满足不同的给药量需求. 体外抗菌实验结果进一步验证了该纳米载药系统的光响应药物释放性能. 此外, 该纳米载药系统在980 nm激光激发下的上转换发光较强且不影响药物释放, 可以实现纳米载药系统的药物定位和生物成像功能. 本研究为发展高效光响应载药体系提供了新的思路.  相似文献   

17.
金属配合物分子纳米结构构筑与调控的STM研究进展   总被引:1,自引:1,他引:0  
金属配合物分子具有结构多样且可控以及功能丰富等特点,在催化、传感、分子识别、纳米器件等领域得到广泛应用, 对金属配合物分子的研究已是分子科学研究中的热点之一.同时, 利用配合物分子构筑表面分子纳米结构以及对配合物单分子性质的研究也日趋活跃. 近年来, 本研究组发展了配合物分子在固体表面的自组装技术, 并结合扫描隧道显微技术(STM)开展了一系列有关金属配合物分子表面纳米结构的研究工作, 在固体表面成功实现了对配体、配合物分子的高分辨STM成像、原位配合以及分子识别, 设计和构筑了多种功能配合物分子纳米结构,并系统研究了结构形成规律. 本文以本研究组近年来有关金属配合物分子组装的研究结果为主, 结合国内外相关研究小组的研究结果,综述有关金属配合物分子纳米结构的构筑与调控的STM研究进展, 介绍该类分子在固体表面的组装和分散规律, 为表面分子纳米结构的构筑和调控提供理论和实验基础.  相似文献   

18.
蛋白质是人体细胞、组织的重要组成部分,与众多代谢活动密切相关,它们的一些微小改变就可能引发人体的重大疾病.因此,蛋白质检测是生物化学领域的重要课题.纳米孔技术能够在单分子水平甚至单氨基酸水平上实时检测蛋白质,有望成为最低成本和最高效的蛋白质检测方法之一.然而,使用纳米孔检测蛋白质时,由于实验条件和检测策略的原因,使得蛋白质在纳米孔中驻留时间过短,无法从蛋白质捕获的电信号中清晰地反映更多的生物细节信息.解决这一问题的关键在于控制蛋白质通过纳米孔时的输运速度,满足传感器件带宽的要求.本综述从外部力场竞争、内部力场相互作用、亲疏水相互作用、空间位阻效应等角度综述了蛋白质在纳米孔中输运的主动操纵技术,目的是提高纳米孔对蛋白质的捕获频率,延长蛋白质在纳米孔内的驻留时间,以实现高分辨率的蛋白质检测,充分揭示蛋白质分子的构象变化机制、反应动力学,甚至实现蛋白质测序等.最后对纳米孔传感技术在蛋白质检测方面存在的巨大挑战和发展趋势进行了详细展望和总结阐述.  相似文献   

19.
刘晓君  涂洋  盖宏伟 《化学进展》2013,(Z1):370-379
单分子宽场光学显微成像技术是单分子检测技术的一种,具有通量高、参数多样、可实时动态监测等优点。本文评述了单分子宽场光学显微成像的技术方法、标记探针、判定原则、检测参数及其在分析化学、生物物理学等领域的应用,指出单分子成像技术正在向仪器设备的实用化、简易化,测量参数的精确化、可视化,研究范围的广泛化、复杂化等方面发展。未来几年单分子成像的研究重点可能会集中在实用定量、突破衍射极限的距离测量、重要生物过程的机理探索和纳米目标物的表征等方面。  相似文献   

20.
在生物医学领域,对纳米尺寸级别的微小生物目标进行精确定位研究具有非常重要的意义,而光学显微成像技术为此提供了强有力的工具。 光学显微成像技术受到光学衍射极限的限制,难以分辨尺寸在衍射极限(<200 nm)以下的生物结构,无法直接获取微小生物结构信息,阻碍了生物医学的进一步发展。 近年来,随着纳米分辨显微成像技术的出现,新型荧光探针的开发、成像系统与设备的不断发展及成像算法不断完善地深入结合,促进了光学衍射极限以下尺寸微观目标的研究。 基于单分子定位的超分辨荧光显微成像(SMLM)包括光激活定位成像(PALM)与随机光学重构超分辨成像(STORM),将有机荧光探针与超分辨光学显微成像技术紧密结合在一起,荧光探针的光物理性质直接决定着超分辨成像结果的好坏。 因此,设计不同性能的荧光探针可以实现超精细结构的不同超分辨成像,为研究其生物学功能提供了有力的工具。 本文着重围绕基于SMLM的原理、有机荧光探针的设计要求、用于SMLM的荧光探针种类及其生物应用等方面进行总结综述,指出了单分子定位成像上存在的不足,并对其发展方向进行了展望,希望为对超分辨成像研究感兴趣或初涉该领域的研究者提供成像理论与探针设计方面的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号