首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

2.
From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.  相似文献   

3.
The electron transfer series of complexes [V((t)bpy)(3)](z) (z = 3+, 2+, 0, 1-) has been synthesized and spectroscopically characterized with the exception of the monocationic species. Magnetic susceptibility measurements (4-290 K) establish an S = 1 ground state for [V((t)bpy)(3)](3+), S = (3)/(2) for [V((t)bpy)(3)](2+), S = (1)/(2) for [V((t)bpy)(3)], and an S = 0 ground state for [V((t)bpy)(3)](1-). The electrochemistry of this series recorded in tetrahydrofuran solution exhibits four reversible one-electron transfer steps. Electronic absorption, X-band electron paramagnetic resonance (EPR), and V K-edge X-ray absorption (XAS) spectra were recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. It is unequivocally shown that the electronic structure of complexes is best described as [V(III)((t)bpy(0))(3)](3+), [V(II)((t)bpy(0))(3)](2+), [V(II)((t)bpy(?))(2)((t)bpy(0))](0), and [V(II)((t)bpy(?))(3)](1-), where ((t)bpy(0)) represents the neutral form of the ligand and ((t)bpy(?))(1-) is the one-electron reduced mononanionic radical form. In the neutral and monoanionic members, containing two and three ((t)bpy(?))(1-) ligands, respectively, the ligand spins are strongly antiferromagnetically coupled to the spins of the central V(II) ion (d(3); S = (3)/(2)) affording the observed ground states given above.  相似文献   

4.
The electronic structures of four members of the electron-transfer series [Fe2(1L)4]n (n = 2-, 1-, 0, 1+) have been elucidated in some detail by electronic absorption, IR, X-band electron paramagnetic resonance (EPR), and M?ssbauer spectroscopies where (1L)(2-) represents the ligand 1,2-bis(4-tert-butylphenyl)-1,2-ethylenedithiolate(2-) and (1L*)- is its pi-radical monoanion. It is conclusively shown that all redox processes are ligand-centered and that high-valent iron(IV) is not accessible. The following complexes have been synthesized: [FeIII2(1L*)2(1L)2]0 (1), [FeIII2(2L*)2(2L)2].2CH2Cl2 (1') where (2L)(2-) is 1,2-bis(p-tolyl)-1,2-ethylenedithiolate(2-) and (2L*)- represents its pi-radical monoanion, [Cp2Co][FeIII2(1L*))(1L)3].4(toluene).0.5Et2O (2), and [Cp2Co]2[FeIII2(1L)4].2(toluene) (3). The crystal structures of 1' and 2 have been determined by single-crystal X-ray crystallography at 100 K. The ground states of complexes have been determined by temperature-dependent magnetic susceptibility measurements and EPR spectroscopy: 1' and 1 are diamagnetic (S(t) = 0); 2 (S(t) = 1/2); 3 (S(t) = 0); the monocation [Fe(III)2(1L*)3(1L)]+ possesses an S(t) = 1/2 ground state (S(t) = total spin ground state of dinuclear species). All species contain pairs of intermediate-spin ferric ions (S(Fe) = 3/2), which are strongly antiferromagnetically coupled (H = -2JS(1).S(2), where S1 = S2 = 3/2 and J = approximately -250 cm(-1)).  相似文献   

5.
The electronic structures of nickel and cobalt centers coordinated by two alpha-iminoketone ligands have been elucidated using density functional theory calculations and a host of physical methods such as X-ray crystallography, cyclic voltammetry, UV-vis spectroscopy, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements. In principle, alpha-iminoketone ligands can exist in three oxidation levels: the closed-shell neutral form (L)0, the closed-shell dianion (L(red))(2-), and the open-shell monoanion (L*)(-). Herein, the monoanionic pi-radical form (L*)(-) of alpha-iminoketones is characterized in the compounds [(L*)2Ni] (1) and [(L*)2Co] (3), where (L*)(-) is the one-electron-reduced form of the neutral ligand (t-Bu)N=CH-C(Ph)=O. The metal centers in 1 and 3 are divalent, high-spin, and coupled antiferromagnetically to two ligand pi radicals. These bis(ligand)metal complexes can be chemically oxidized by two electrons to give the dications [trans-(L)2Ni(CH3CN)2](PF6)2 (2) and [trans-(L)2Co(CH3CN)2](PF6)2 (4), wherein the ligands are in the neutral form.  相似文献   

6.
Three dinuclear (nitrosyl)iron complexes containing three 1,2-di(phenyl)ethylene-1,2-dithiolate ligands have been prepared ([Fe2(NO)2(S2C2R2)3]0 (R = phenyl, 1a; p-tolyl, 2a; (4-tert-butyl)phenyl, 3a)). Each of these compounds represents the first member of a three-membered electron-transfer series: [Fe2(NO)2(S2C2R2)3]z (z = 0, -1, , -2). The salt [Co(Cp)2][Fe2(NO)2(L3)3] has also been isolated. The molecular structures of 2a and 3a have been determined by X-ray crystallography. Both neutral complexes contain two nearly linear FeNO units, one of which is S,S'-coordinated to two dithiolene ligands yielding a square-based pyramidal Fe(NO)S4 polyhedron; the second FeNO moiety forms two (micro2-S)-bridges to the first unit and is S,S'-coordinated to a third dithiolate radical yielding also a square-based pyramidal Fe(NO)S4 polyhedron. The electronic structures of the neutral, monoanionic, and dianionic species have been elucidated spectroscopically (UV-vis, IR, EPR, M?ssbauer): [[FeII(NO+)](L*)[FeII(NO)](L)2]0 (S = 0); [[FeII(NO)](L*)[FeII(NO)](L)2]1- (S = 1/2); and [[FeII(NO)](L)[FeII(NO)](L)2]2- (S = 0), where (L)2- represents the corresponding closed-shell dithiolate dianion and (L*)- is its monoanionic radical.  相似文献   

7.
Crystalline purple [PPh4][FeIIIL2] (1), where L2- represents the closed-shell dianion of 4,6-di-tert-butyl-2-[(pentafluorophenyl)amino]benzenethiol, has been synthesized from the reaction of H2L and FeBr2 (2:1) in acetonitrile with excess NEt3, careful, brief exposure of the solution to air, and addition of [PPh4]Br. The monoanion has been shown by X-ray crystallography to be square planar. The oxidation of 1 with 1 equiv of iodine produces the neutral species [FeI(L*)2]0 (2) where (L*)1- represents the one-electron oxidized pi radical anion of L2-. The reaction of H2Land PtCl2 (2:1) and NEt3 in CH3CN in the presence of air produced green, crystalline [PtII(L*)2] (3). From temperature dependent(2-300 K) magnetic susceptibility measurements, it was established that 1 possesses a central intermediate spin ferric ion (SFe ) 3/2), whereas neutral 2 has a doublet ground state (St ) 1/2) comprising an intermediate spin ferric ion coupled antiferromagnetically to two ligand pi radicals (L*)1- (Srad ) 1/2). Complex 3 is diamagnetic. Almeida et al.'s complexes in ref 1, [N(n-Bu)4][FeIII(qdt)2] (A), and [PPh4]2[FeIII2(qdt)4] (B), have been revisited. It is shown here that the square planar anion in mononuclear [FeIII(qdt)2]- also possesses an SFe ) 3/2 ground state. The zero-field M?ssbauer spectra of 1, 2, A, and B have been recorded and the molecular and electronic structures of all mononuclear iron species have been calculated by density functional theoretical methods.It is shown that the S ) 3/2 ground state in 1 and A is lower in energy by 8.5 and 16.6 kcal mol(-1), respectively,than the S ) 1/2 state.  相似文献   

8.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

9.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

10.
A series of redox isomers of [CrIII(X4SQ)(X4Cat)2]2-, [CrIII(X4SQ)2(X4Cat)]-, and [CrIII(X4SQ)3]0 (X = Cl and Br, SQ = semiquinonate, and Cat = catecholate) have been synthesized and characterized as charge-transfer (CT) compounds with metallocenium cations: (CoIIICp2)2[CrIII(Cl4SQ)(Cl4Cat)2] (1), (CoIIICp2)2[CrIII(Br4SQ)(Br4Cat)2] (2), (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (4), (FeIIICp2)[CrIII(Br4SQ)2(Br4Cat)].CS2 (5), and (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)][CrIII(Cl4SQ)3] (6). First, the oxidation states of the chromium complexes are strongly dependent on the redox potentials of the metallocenes used. The CoIICp2, exhibiting stronger reduction power than FeIICp2, is useful for two-electron reduction of the [CrIII(X4SQ)3]0, affording [CrIII(X4SQ)(X4Cat)2]2- (1 and 2), which are first isolated and crystallographically characterized in the solid state. In contrast the reaction with FeIICp2 affords only [CrIII(X4SQ)2(X4Cat)]- (4 and 5). Second, solvents influence crystal structures of these compounds. The solvent set of C6H6/CS2 gives 1:1:C6H6 compound 4 with unique charged anions, [CrIII(Cl4SQ)2(Cl4Cat)]-, while the other set, n-C6H12/CS2, affords 1:2 compound 6 including the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0. The [CrIII(X4SQ)(X4Cat)2]2- anions in 1 and 2 show no significant interconnection between them (discrete type), while the [CrIII(X4SQ)2(X4Cat)]- anions in 4-6 show one-dimensional column-type structures with the aid of intermolecular stacking interactions of the ligand moieties. The anions in 4 show additional stacking interaction with the [FeIIICp2]+ to form one-dimensional ...[D][A][S][D][A]... (D = [FeIIICp2]+, A = [CrIII(Cl4SQ)2(Cl4Cat)]-, and S = C6H6) type mixed-stack arrangements similar to that of previously reported (CoIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (3). Compound 6 forms a two-dimensional sheet structure where the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0, are included. The sheet is regarded as a mixed-valence molecular assembly. Two types of the anions, [CrIII(X4SQ)(X4Cat)2]2- (1 and 2) and [CrIII(X4SQ)2(X4Cat)]- (4-6), exhibiting an intramolecular mixed-valence state, show intramolecular intervalence CT transition (IVCT) from the Cat to the SQ at near 5800 and 4300 cm-1, respectively, both in the solution and in the solid states. The intermolecular mixed-valence state of 6 was characterized by absorption spectroscopy, electric conductivity, and SQUID magnetometry. Interestingly, this mixed-valence state of the chromium module is dependent on the redox active nature of the coordinated ligands.  相似文献   

11.
From the reaction of in situ generated 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiol, 2LH2, and Na[AuCl4].2H2O in 1,4-dioxane, green brown crystals of diamagnetic [N(n-Bu)4][AuIII(2L)2] (1) were obtained. As shown by cyclic voltammetry, 1 is a member of an electron-transfer series comprising the dianion [AuII(2L)2]2-, the monoanion [AuIII(2L)2]-, the neutral species [AuIII(2L*)(2L)]0 <--> [AuIII(2L)(2L*)]0, and the monocation [AuIII(2L*)2]+. (2L*)1- represents the pi radical anion (Srad = 1/2) of the one-electron oxidized closed-shell dianion (2L)2-. Oxidation of 1 in CH2Cl2 with ferrocenium hexafluorophosphate affords green, paramagnetic microcrystals of [AuIII(2L*)(2L)] <--> [AuIII(2L)(2L*)] (2) (S = 1/2). Complexes 1 and 2 have been characterized by X-ray crystallography. Both species possess square-planar monoanions and neutral molecules, respectively. From the oxidation reaction of 1 or [N(n-Bu)4][AuIII(3L)2] with 2-3 equiv of [NO]BF4 in CH2Cl2, a green solution of [AuIII(2L*)2]+ and green microcrystals of [AuIII(3L*)2]BF4 (3) were obtained, respectively; (3L)2- represents the dianion 1,2-di(4-diphenyl)ethylene-1,2-dithiolate, and (3L*)1- is its pi radical monoanion. The electronic structures of this series of gold species have been elucidated by UV-vis, EPR spectroscopies, and DFT calculations. It is shown computationally by density functional theoretical (DFT) methods that the electronic structure of [AuIII(1L*)2]+ is best described as a singlet diradical (St = 0); the ligand mixed valency in the neutral species 2 is of class (III) (delocalized); the monoanion in 1 contains a AuIII ion and two closed-shell dianionic ligands; and the corresponding dianions [Au(L)2]2- are best described as an intermediate AuII/AuIII species with a metal-ligand delocalized SOMO (25% Au 5d, 75% 3p of four S atoms). (1L)2- is the dianion 1,2-di(phenyl)ethylene-1,2-dithiolate, and (1L*)1- is the pi radical monoanion. The neutral species [PdII(2L*)2] (4) has also been synthesized and characterized by X-ray crystallography. Its electronic structure is the same as described for [AuIII(1L*)2]+ (singlet diradical), whereas that of the monoanion [PdII(2L*)(2L)]- <--> [Pd(2L)(2L*)]- corresponds to that of the neutral gold complex 2. Anodic oxidation of the analogous monoanion [AuIII(mnt)2]-, where mnt = maleonitriledithiolate, gave the neutral complex [Au(mnt)(mnt*)] (E1/2 = 0.91 V vs Fc+/Fc). The optical and EPR spectroscopies of [Au(mnt)(mnt*)] were consistent with those observed for the corresponding di(tert-butylphenyl)ethylenedithiolate complex 2.  相似文献   

12.
A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.  相似文献   

13.
Four members of the electron-transfer series [Fe(NO)(S(2)C(2)R(2))2]z (z = 1+, 0, 1-, 2-) have been isolated as solid materials (R = p-tolyl): [1a](BF4), [1a]0, [Co(Cp)2][1a], and [Co(Cp)2]2[1a]. In addition, complexes [2a]0 (R = 4,4-diphenyl), [3a]0 (R = p-methoxyphenyl), [Et(4)N][4a] (R = phenyl), and [PPh(4)][5a] (R = -CN) have been synthesized and the members of each of their electron-transfer series electrochemically generated in CH(2)Cl(2) solution. All species have been characterized electro- and magnetochemically. Their electronic, M?ssbauer, and electron paramagnetic resonance spectra as well as their infrared spectra have been recorded in order to elucidate the electronic structure of each member of the electron-transfer series. It is shown that the monocationic, neutral, and monoanionic species possess an {FeNO}6 (S = 0) moiety where the redox chemistry is sulfur ligand-based, (L)2-(L*)1-: [Fe(NO)(L*)2]+ (S = 0), [Fe(NO)(L*)(L)]0 <--> [Fe(NO)(L)(L*)]0 (S = 1/2), [Fe(NO)(L)2]- (S = 0). Further one-electron reduction generates a dianion with an {FeNO}7 (S = 1/2) unit and two fully reduced, diamagnetic dianions L2-: [Fe(NO)(L)2]2- (S = 1/2).  相似文献   

14.
By using the tripodal tetradentate ligand tris(2-benzimidazolylmethyl)amine (H(3)ntb), which can have several charge states depending on the number of secondary amine protons, mononuclear octahedral and dinuclear trigonal bipyramidal Fe(III) complexes were prepared. The reaction of mononuclear octahedral [Fe(III)(H(3)ntb)Cl(2)]ClO(4), 1, with 3 equiv of sec-butylamine in methanol led to the formation of mononuclear cis-dimethoxo octahedral Fe(III)(H(2)ntb)(OMe)(2), 2. One equivalent of the sec-butylamine was used to generate the monoanionic H(2)ntb(-) ligand where one of the three amines in the benzimidazolyl groups was deprotonated. The remaining 2 equiv were used to generate two methoxides that were coordinated to the octahedral Fe(III) ion in a cis fashion as demonstrated by the chlorides in 1. Reaction of 1 with excess (7 equiv) sec-butylamine generated the doubly deprotonated dianionic Hntb(2-) that stabilized the dinuclear mu-oxo Fe(III)(2)O(Hntb)(2), 3, adopting a five-coordinate trigonal bipyramidal geometry. The magnetic data for 3 are consistent with the antiferromagnetically coupled Fe(III) (S = 5/2) sites with the coupling constant J = -127 cm(-1).  相似文献   

15.
The electron transfer series of complexes [Cr((t)bpy)(3)](n)(PF(6))(n) (n = 3+, 2+, 1+, 0 (1-4)) has been synthesized and the molecular structures of 1, 2, and 3 have been determined by single-crystal X-ray crystallography; the structure of 4 has been investigated using extended X-ray absorption fine structure (EXAFS) analysis. Magnetic susceptibility measurements (4-300 K) established an S = 3/2 ground state for 1, an S = 1 ground state for 2, an S = 1/2 ground state for 3, and an S = 0 ground state for 4. The electrochemistry of this series in CH(3)CN solution exhibits three reversible one-electron transfer waves. UV-vis/NIR spectra and Cr K-edge X-ray absorption spectra (XAS) are reported. The same experimental techniques have been applied for [Cr(III)(tacn)(2)]Br(3)·5H(2)O (5) and [Cr(II)(tacn)(2)]Cl(2) (6), which possess an S = 3/2 and an S = 2 ground state, respectively (tacn = 1,4,7-triazacyclononane, a tridentate, pure σ-donor ligand). The Cr K-edge XAS spectra of the corresponding complexes K(4)[Cr(II)(CN)(6)]·10H(2)O (S = 1) (7) and K(3)[Cr(III)(CN)(6)] (S = 3/2) (8) have also been recorded. All complexes have been studied computationally with density functional theory (DFT) using the B3LYP functional. The molecular and electronic structures of the anionic members of the series [Cr(bpy)(3)](1-,2-,3-) have also been calculated. It is unequivocally shown that all members of the electron transfer series 1-4 and [Cr(bpy)(3)](n) (n = 3+, 2+, 1+, 0, 1-, 2, 3-) possess a central Cr(III) ion ((t(2g))(3), S = 3/2). The three N,N'-coordinated neutral (bpy(0)) ligands in the trication 1 and [Cr(III)(bpy)(3)](3+) are one-electron reduced in a stepwise fashion to localized one, two, and three π-radical anions (bpy(?))(1-) in the dicationic, monocationic, and neutral species, respectively. Complexes 2 and [Cr(bpy)(3)](2+) cannot be described as low-spin Cr(II) species; they are in fact best described as [Cr(III)((t)bpy(?))((t)bpy(0))(2)](2+) and [Cr(III)(bpy(?))(bpy(0))(2)](2+) species. Further one-electron reductions yield one, two, and three diamagnetic (bpy(2-))(2-) dianions in the mono-, di-, and trianion. Thus, [Cr(III)(bpy(2-))(3)](3-) is a normal Werner-type Cr(III) (!) species. In all complexes containing (bpy(?))(1-) ligands, the ligand spins are strongly antiferromagnetically coupled to the spins of the central Cr(III) ion (d(3), S(Cr) = 3/2) affording the observed ground states given above. Thus, all redox chemistry of [Cr(bpy)(3)](n) complexes is ligand-based and documents that the ligand 2,2'-bipyridine is a redox noninnocent ligand; it exists in three oxidation levels in these complexes: as N,N'-coordinated neutral (bpy(0)), monoanionic π-radical (bpy(?))(1-), and diamagnetic dianionic (bpy(2-))(2-).  相似文献   

16.
We report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of S相似文献   

17.
The binuclear complex NiII2L(H2O)2(ClO4)2(1) and the neutral tetranuclear bimetallic compounds [{M(III)(phen)(CN)4}2{NiII2L(H2O)2}].2CH3CN with M=Fe (2) and Cr (3)[H2L=11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1(9,13)]hexacosa-2,7,9,11,13(26),14,19,21(25),22,24-decaene-25,26-diol] have been synthesized and the structures of and determined by single crystal X-ray diffraction. and are isostructural compounds whose structure is made up of centrosymmetric binuclear cations [Ni2(L)(H2O)2]2+ and two peripheral [M(phen)(CN)4]- anions [M=Fe (2) and Cr (3)] acting as monodentate ligands towards the nickel atoms through one of their four cyanide nitrogen atoms. The environment of the metal atoms in 2 and 3 is six-coordinated: two phen-nitrogen and four cyanide-carbon atoms at the iron and chromium atoms and a water molecule, one cyanide-nitrogen and two phenolate-oxygens and two imine-nitrogens from the binucleating ligand L2- at the nickel atom build distorted octahedral surroundings. The values of the FeNi and CrNi separations through the single cyanide bridge are 5.058(1) and 5.174(2)A respectively, whereas the Ni-Ni distances across the double phenolate bridge are 3.098(2)(2) and 3.101(1) A (3). The magnetic properties of have been investigated in the temperature range 1.9-290 K. The magnetic behaviour of corresponds to that of an antiferromagnetically coupled nickel(II) dimer with J=-61.0(1) cm-1, the Hamiltonian being defined as H=-J S(A).S(B). An overall antiferromagnetic behaviour is observed for and with a low-lying singlet spin state. The values of the intramolecular magnetic couplings are J(Fe-Ni)=+17.4(1) cm-1 and J(Ni-Ni(a))=-44.4(1) cm-1 for and J(Cr-Ni)=+11.8(1) cm-1 and J(Ni-Ni(a))=-44.6(1) cm-1 for [H=-J(M-Ni)(S(M).S(Ni)+S(Ma).S(Nia))-J(Ni-Nia)S(Ni)S(Nia)]. Theoretical calculations using methods based on density functional theory (DFT) have been employed on in order to analyze the efficiency of the exchange pathways involved and also to substantiate the exchange coupling parameters.  相似文献   

18.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

19.
Nickel(II) complexes of the monoanionic borato ligands [Ph2B(CH2SCH3)2] (abbreviated Ph2Bt), [Ph2B(CH2S(t)Bu)2] (Ph2Bt(tBu)), [Ph2B(1-pyrazolyl)(CH2SCH3)], and [Ph2B(1-pyrazolyl)(CH2S(t)Bu)] have been prepared and characterized. While [Ph2Bt] formed the square planar homoleptic complex, [Ph2Bt]2Ni, the larger [S2] ligand with tert-butyl substituents, [Ph2BttBu], yielded an unexpected organometallic derivative, [Ph2Bt(tBu)]Ni(eta2-CH2SBut), resulting from B-C bond rupture. The analogous thiametallacycle derived from the [S3] ligand, [PhB(CH2S(t)Bu)3] (PhTt(tBu)), has been structurally authenticated (Schebler, P. J.; Mandimutsira, B. S.; Riordan, C. G.; Liable-Sands, L.; Incarvito, C. D.; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123, 331). The [SN] borato ligands formed exclusively the cis stereoisomers upon reaction with Ni(II) sources, [Ph2B(1-pyrazolyl)(CH2SR)]2Ni. Analysis of the Ni(II/I) reduction potentials by cyclic voltammetry revealed a approximately 600 mV anodic shift upon replacement of two thioether donors ([Ph2Bt]2Ni) with two pyrazolyl donors ([Ph2B(1-pyrazolyl)(CH2SCH3)]2Ni) consistent with the all thioether environment stabilizing the lower oxidation state of nickel.  相似文献   

20.
The four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion. Single-crystal X-ray diffraction studies of 1 and 2 performed at 100(2) K reveal a distorted tetrahedral coordination environment at the iron centers, as a result of the intramolecular pi-pi interactions between C(6)F(5) rings. The electronic structures of 1 and 2 were unambiguously determined by a combination of (57)Fe M?ssbauer and electronic spectroscopy, magnetic susceptibility measurements, X-ray crystallography, and DFT calculations. Compound 1 contains an intermediate-spin Fe(III) ion (S(Fe)=3/2) strongly antiferromagnetically coupled to a pi-ligand radical (S(R)=1/2) yielding an S(t)=1 ground state. Complex 2 possesses a high-spin Fe(II) center (S(Fe)=2) with two closed-shell dianionic ligands. Complexes 1 and 2 are members of the redox series [Fe(pda)(2)](n) with n=0 for 1 and n=2- for 2. The anion n=1- has been reported previously in the coordination salt [Fe(dad)(3)][Fe(pda)(2)] (3; dad=N,N'-bis(phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene). A complicated temperature-dependent electronic structure has been observed for this salt. Here, DFT calculations performed on 3 confirm the previous assignments of spin- and oxidation-states. Thus, [Fe(pda)(2)](n) (n=0, 1-, 2-) constitutes an electron-transfer series, which has also been established by cyclic voltammetry; the mono- and dications (n=1+ and 2+) are also accessible in solution, but have not been further investigated. The (57)Fe M?ssbauer spectra of [Fe(pda)(2)](n) species in 1 and 3 show extremely large quadrupole splitting constants due to addition of the valence and covalence contributions that have been confirmed by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号