首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The conformational behavior and infrared spectrum of l-phenylalanine were studied by matrix-isolation infrared spectroscopy and DFT [B3LYP/6-311++G(d,p)] calculations. The fourteen most stable structures were predicted to differ in energy by less than 10 kJ mol(-1), eight of them with abundances higher than 5% at the temperature of evaporation of the compound (423 K). Experimental results suggest that six conformers contribute to the spectrum of the isolated compound, whereas two conformers (IIb(3) and IIIb(3)) relax in matrix to a more stable form (IIb(2)) due to low energy barriers for conformational isomerization (conformational cooling). The two lowest-energy conformers (Ib(1), Ia) differ only in the arrangement of the amino acid group relative to the phenyl ring; they exhibit a relatively strong stabilizing intramolecular hydrogen bond of the O-H...N type and the carboxylic group in the trans configuration (O=C-O-H dihedral angle ca. 180 degrees ). Type II conformers have a weaker H-bond of the N-H...O=C type, but they bear the more favorable cis arrangement of the carboxylic group. Being considerably more flexible, type II conformers are stabilized by entropy and the relative abundances of two conformers of this type (IIb(2) and IIc(1)) are shown to significantly increase with temperature due to entropic stabilization. At 423 K, these conformers are found to be the first and third most abundant species present in the conformational equilibrium, with relative populations of ca. 15% each, whereas their populations could be expected to be only ca. 5% if entropy effects were not taken into consideration. Indeed, phenylalanine can be considered a notable example of a molecule where entropy plays an essential role in determining the relative abundance of the possible low-energy conformational states and then, the thermodynamics of the compound, even at moderate temperatures. Upon UV irradiation (lambda > 235 nm) of the matrix-isolated compound, unimolecular photodecomposition of phenylalanine is observed with production of CO(2) and phenethylamine.  相似文献   

2.
A new Schiff base compound, 3-(5-bromo-2-hydroxybenzylideneamino)phenol (abbreviated as BHAP) was synthesized and characterized by 1H- and 13C- nuclear magnetic resonance and infrared spectroscopies. DFT/B3LYP/6-311++G(d,p) calculations were undertaken in order to explore the conformational space of both the E- and Z- geometrical isomers of the enol-imine and keto-amine tautomers of the compound. Optimized geometries and relative energies were obtained, and it was shown that the most stable species is the E-enol-imine form, which may exist in four low-energy intramolecularly hydrogen-bonded forms (I, II, V, and VI) that are almost isoenergetic. These conformers were concluded to exist in the gas phase equilibrium with nearly equal populations. On the other hand, the infrared spectra of the compound isolated in a cryogenic argon matrix (10 K) are compatible with the presence in the matrix of only two of these conformers (conformers II and V), while conformers I and VI convert to these ones by quantum mechanical tunneling through the barrier associated with the rotation of the OH phenolic group around the C–O bond. The matrix isolation infrared spectrum was then assigned and interpreted with help of the DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra for conformers II and V. In addition, natural bond orbital (NBO) analysis was performed on the most stable conformer of the experimentally relevant isomeric form (E-enol-imino conformer V) to shed light on details of its electronic structure. This investigation stresses the fundamental structural relevance of the O–H···N intramolecular H-bond in o-hydroxyaryl Schiff base compounds.  相似文献   

3.
The conformational behavior and structural stability of 3,3-dichloropropanal and 3,3,3-trichloropropanal were investigated by ab initio calculations. The 6-311 + + G** basis set was employed to include polarization and diffuse functions in the calculations at B3LYP level. From the calculation, the trans conformer of 3,3,3-trichloropropanal was predicted to be the predominant conformer with about 2 kcal mol(-1) of energy lower than the cis form. Additionally, 3,3 dichloro-propanal was predicted to exist as a mixture of three stable conformers. The potential function scans were calculated for the two molecules from which the rotational barriers could be estimated. The vibrational frequencies were computed at B3LYP level and complete vibrational assignments were made based on normal coordinate calculations for the conformers of the two molecules. Vibrational Raman and infrared spectra of the mixture of the stable conformers were computed at 300 K.  相似文献   

4.
Fourier transform infrared spectra of fumaryl chloride 1 isolated in an argon matrix at 10 K have been analyzed. The comparison between the ab initio HF/6-31G calculated infrared spectra with the experimental ones reveals the existence of three planar conformers, the cis cis 1a, the cis trans 1b and the trans trans 1c. Laser UV irradiation of 1 at lambda = 340 nm yields maleoyl chloride 2 by a carbon carbon double bond photoisomerization process. The first identification of this compound was performed by comparison of the experimental infrared spectra with the calculated ones at the MP2/6-1G** level. AM1 semiempirical and ab initio calculations were used to calculate the structure and the relative stability of the three non planar maleoyl chloride conformers.  相似文献   

5.
The gas-phase conformations of a series of trinucleotides containing thymine (T) and guanine (G) bases were investigated for the possibility of zwitterion formation. Deprotonated dGTT-, dTGT-, and dTTG- ions were formed by MALDI and their collision cross-sections in helium measured by ion mobility based methods. dTGT- was theoretically modeled assuming a zwitterionic and non-zwitterionic structure while dGTT- and dTTG- were considered "control groups" and modeled only as non-zwitterions. In the zwitterion, G is protonated at the N7 site and the two neighboring phosphates are deprotonated. In the non-zwitterion, G is not protonated and only one phosphate group is deprotonated. Two conformers, whose cross-sections differ by 17 +/- 2 A2, are observed for dTGT- in the 80 K experiments. Multiple conformers are also observed for dGTT- and dTTG- at 80 K, though relative cross-section differences between the conformers could not be accurately obtained. At higher temperatures (>200 K), the conformers rapidly interconvert on the experimental time scale and a single "time-averaged" conformer is observed in the ion mobility data. Theory predicts only one low-energy conformation for the zwitterionic form of dTGT- with a cross-section 8% smaller than experimental values. Additionally, the extra H+ on G does not bridge both phosphates. Thus, dTGT- does not appear to be a stable zwitterion in the gas-phase. Theory does, however, predict two low-energy conformers for the non-zwitterionic form of dTGT- that differ in cross-section by 18 +/- 3 A2, in good agreement with the experiment. In the smaller cross-section form (folded conformer), G and one of the T bases are stacked while the other T folds towards the stacked pair and hydrogen bonds to G. In the larger cross-section form (open conformer), the unstacked T extends away from the T/G stacked pair. Similar folded and open conformers are predicted for all three trinucleotides, regardless of which phosphate is deprotonated.  相似文献   

6.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

7.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

8.
In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.  相似文献   

9.
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with Cs symmetry, has a predicted enthalpy difference of more than 1500 cm(-1) from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C2(GG)>C1(AG)>C2v(AA)>Cs(GG'), where A indicates the anti form for one of the CH2Cl groups and G indicates the gauche conformation for the other CH2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C2 conformer, and 5 of the fundamentals of the C2v conformer and 13 those of the C1 conformer can be confidently assigned.  相似文献   

10.
The infrared spectra (3200-400 cm(-1)) of krypton solutions of 1,3-difluoropropane, FCH2CH2CH2F, at variable temperatures (-105 to -150 degrees C) have been recorded. Additionally, the infrared spectra (3200-50 cm(-1)) of the gas and solid have been recorded as well as the Raman spectrum of the liquid. From a comparison of the spectra of the fluid phases with that in the solid, all of the fundamental vibrations of the C2 conformer (gauche-gauche) where the first gauche indicates the form for one of the CH2F groups and the second gauche the other CH2F, and many of those for the C1 form (trans-gauche) have been identified. Tentative assignments have been made for a few of the fundamentals of the other two conformers, i.e. C2v (trans-trans) and Cs (gauche-gauche'). By utilizing six pairs of fundamentals for these two conformers in the krypton solutions, an enthalpy difference of 277 +/- 28 cm(-1) (3.31 +/- 0.33 kJ mol(-1)) has been obtained for the C2 versus C1 conformer with the C2 conformer the more stable form. For the C2v conformer, the enthalpy difference has been determined to be 716 +/- 72 cm(-1) (8.57 +/- 0.86 kJ mol(-1)) and for the Cs form 971 +/- 115 cm(-1) (11.6 +/- 1.4 kJ mol(-1)). It is estimated that there is 64 +/- 3% of the C2 form, 34 +/-3% of the C1 form, 1% of the C2v form and 0.6% of the Cs conformer present at ambient temperature. Equilibrium geometries and total energies of the four stable conformers have been determined from ab initio calculations with full electron correlation by the perturbation method to second order as well as by hybrid density functional theory calculations with the B3LYP method using a number of basis sets. The MP2 calculations predict the C1 conformer stability to be slightly higher than the experimentally determined value whereas for the C2v and Cs conformers the predicted energy difference is much larger than the experimental value. The B3LYP calculations predict a better energy difference for both the C1 and C2v as well as for the Cs conformers than the MP2 values. A complete vibrational assignment is proposed for the C2 conformer and many of the fundamentals have been identified for the C1 form based on the force constants, relative intensities and rotational-vibrational band contours obtained from the predicted equilibrium geometry parameters. By combining previously reported rotational constants for the C2 and C1 conformers with ab initio MP2/6-311 + G(d, p) predicted parameters, adjusted r0 parameters have been obtained for both conformers. Comparisons are made with the parameters obtained for some other molecules containing the FCH2 group. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

11.
In this work, the conformational space of the pseudosaccharyl ether 3-(allyloxy)-1,2-benzisothiazole 1,1-dioxide (ABID) has been studied by means of infrared spectroscopy and density functional theory (DFT) calculations. Five different low energy conformers (TSk, TC, GSk, GSk' and GC, with relative energies of 0.00, 1.97, 2.00, 3.82 and 6.02 kJ mol(-1), respectively) were found on the DFT(B3LYP)/6-311++G(3df,3pd) potential energy surface of the molecule, all of them differing in the conformation of the allyl substituent. According to the calculations, in the gaseous phase all conformers are significantly populated (TSk:TC:GSk:GSk':GC = 47%:16%:18%:12%:7%, at 350 K). In the cryogenic matrices, however, only the TSk and TC conformers exist due to isomerization from the higher energy gauche forms to the most stable trans isomers during deposition of the matrix (conformational cooling). The observed conformational cooling is in consonance with the low calculated energy barriers for the GSk --> TSk, GSk' --> TSk and GC --> TC isomerization processes. Results from annealing experiments in krypton matrix doubtlessly show that in this matrix the order of stability of the TSk and TC conformers is reversed, with the more planar TC form becoming the most stable conformer.  相似文献   

12.
The structural and conformational properties of 1-fluorocyclopropanecarboxylic acid have been explored by microwave spectroscopy and a series of ab initio (MP2/6-311++G(d,p) level), density functional theory (B3LYP/aug-cc-pVTZ level), and G3 quantum chemical calculations. Four "stable" conformers, denoted conformers I-IV, were found in the quantum chemical calculations, three of which (conformers I -III) were predicted to be low-energy forms. Conformer I was in all the quantum chemical calculations predicted to have the lowest energy, conformer III to have the second lowest energy, and conformer II to have the third lowest energy. Conformers II and III were calculated to have relatively large dipole moments, while conformer I was predicted to have a small dipole moment. The microwave spectrum was investigated in the 18-62 GHz spectral range. The microwave spectra of conformers II and III were assigned. Conformer I was not assigned presumably because its dipole moment is comparatively small. Conformer II is stabilized by an intramolecular hydrogen bond formed between the fluorine atom and the hydrogen atom of the carboxylic acid group. Conformer III has a synperiplanar orientation for the F-C-C=O and H-O-C=O chains of atoms. Its dipole moment is: mua = 3.4(10), mub = 10.1(13), and muc = 0.0 (assumed) and mu(tot) = 10.6(14) x 10(-30) C m [3.2(4) D]. Several vibrationally excited states of the lowest torsional mode of each of II and III were also assigned. The hydrogen-bonded conformer II was found to be 2.7(2) kJ/mol less stable than III by relative intensity measurements. Absolute intensity measurements were used to show that the unassigned conformer I is the most abundant form present at a concentration of roughly 65% at room temperature. Conformer I was estimated to be ca. 5.0 kJ/mol more stable than the hydrogen-bonded rotamer (conformer II) and ca. 2.3 kJ/mol more stable than conformer III. The best agreement with the theoretical calculations is found in the MP2 calculations, which predict conformer I to be 5.1 kJ/mol more stable than III and 1.7 kJ/mol more stable than II.  相似文献   

13.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

14.
The molecular structure of axial and equatorial conformers of 1-trifluoromethyl-1-silacyclohexane, (C5H10SiHCF3), as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR) spectroscopy, and quantum chemical calculations (B3LYP, MP2, and CBS-QB3). According to GED, the compound exists as a mixture of two Cs symmetry conformers possessing the chair conformation of the six-membered ring and differing in the axial or equatorial position of the CF3 group (axial=58(12) mol%/equatorial=42(12) mol%) at T=293 K. This result is in a good agreement with the theoretical prediction. This is, however, in sharp contrast to the conformational properties of the cyclohexane analogue. The main structural feature for both conformers is the unusually long exocyclic bond length Si--C 1.934(10) A. A low-temperature 19F NMR experiment results in an axial/equatorial ratio of 17(2) mol%:83(2) mol% at 113 K and a DeltaG (not equal) of 5.5(2) kcal mol-1. CBS-QB3 calculations in the gas-phase and solvation effect calculations using the PCM(B3LYP/6-311G*) and IPCM(B3LYP/6-311G*) models were applied to estimate the axial/equatorial ratio in the 100-300 K temperature range, which showed excellent agreement with the experimental results. The minimum energy pathways for the chair-to-chair inversion of trifluoromethylsilacyclohexane and methylsilacyclohexane were also calculated using the STQN(Path) method.  相似文献   

15.
A comprehensive conformational analysis of isolated 2'-beta-deoxy-thymidine (T), canonical DNA nucleoside, has been performed by means of ab initio calculations at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) level of theory. At 298.15 K, all 92 conformers of isolated dT are within a 7.49 kcal/mol Gibbs energy range. Syn orientation for the base and South (S) conformers for the sugar dominate at this temperature: syn/anti = 61.6%:38.4% and S/N = 74.5%:25.5%. However, at 420 K, the majority of conformers contain anti base and the population of North (N) sugars increases: syn/anti = 38.0%:62.0% and S/N = 59.5%:40.5%. The whole conformational parameters (P, chi, gamma, delta, beta, epsilon, nu max) were analyzed as well as the energies of the OH...O intramolecular H-bonds on the basis of nu(OH) stretching vibrations. Convolution of calculated IR spectra of all of the T conformers appears consistent with its low-temperature matrix spectrum (Ivanov et al. Low Temp. Phys. 2003, 29, 809). The maximal discrepancy in frequencies between calculated and experimental spectra is less than 1%. A conclusion was made that for reliable reconstruction of the isolated nucleoside IR spectrum the quasi whole set of conformers should be taken into consideration. In essence, this result opens up a possibility to reconstruct IR spectra of isolated nucleosides at physiological temperatures with rather satisfactory probability.  相似文献   

16.
3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O=C-C=C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol(-1) more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol(-1) from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion ~7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C(3)H(4) isomers: cyclopropene and propadiene.  相似文献   

17.
The infrared spectra of dimethylhydrogen phosphonate (DMHP) isolated in nitrogen, argon and krypton matrices using an effusive source at 298 and 373 K have been recorded. Experiments were also performed using a supersonic jet source to look for conformational cooling in the expansion process. As a result of these experiments, infrared spectral characteristics of the ground and higher energy conformers of the DMHP have been identified for the first time. The structures of DMHP were optimized at the hybrid B3LYP and Hartree fock (HF) levels of theory using the 6-31++G** basis sets. Computationally, four minima were obtained corresponding to DMHP conformers with G (+/-)G (-/+), G (-)G (-), TG (+) and TG (-) structures in the order of increasing energy. Frequency calculations were done to confirm that the structures were indeed minima on the potential energy surface (PES). The computed frequencies corroborated well with the experimental matrix isolation infrared frequencies leading to definite assignments of the infrared features of DMHP, for the G (+/-)G (-/+) and TG (+) conformers. At B3LYP/6-31++G** level, the energy difference between the G (+/-)G (-/+) and G (-)G (-) conformer was 1.53 kcal/mol, and that between G (+/-)G (-/+) and TG (+), G (+/-)G (-/+) and TG (-) were 1.65 and 1.95 kcal/mol. Transition-state calculations were also carried out at B3LYP/6-31++G** level connecting the G (+/-)G (-/+) to G (-)G (-), TG (+) and TG (-) conformers. Computations indicated that the conformer interconversion between G (-)G (-) --> G (+/-)G (-/+) is barrierless, whereas the barriers for TG (+) --> G (+/-)G (-/+) and TG (-) --> G (+/-)G (-/+) are 1.47 and 0.88 kcal/mol, respectively.  相似文献   

18.
The rotational spectra of four (GT, TT, TG, and GG) of the five possible conformers of 1-fluorobutane have been assigned by combining free jet and conventional microwave spectroscopy. The geometry optimization was performed at the MP2 (full) level of theory with the 6-31G (d) and 6-311G (d, p) basis sets and by using the B3LYP (3df, 3pd) density functional method. The relative stability of the five rotamers is calculated at the QCISD (T)/6-311G (d, p) level of theory. In spite of the fact that ab initio calculations indicated the unobserved GG' conformer to be more stable than at least one of the observed conformers it was not possible to detect its rotational spectrum. GT and TG are the most and the least stable species, respectively. The rotational spectra of several vibrational satellites of the four conformers have been studied by conventional microwave spectroscopy. The overall conformational equilibrium is governed by the two-dimensional potential energy surface of the skeletal torsions MeC-CC and FC-CC, which have been evaluated by a flexible model analysis, based on the experimental values of the relative conformational and vibrational energy spacings, and on the shifts of second moments of inertia upon conformational change and vibrational excitation. The relative energy of the fifth stable conformer (GG') was determined to be 333 cm(-1) from flexible model calculations, and to be 271 cm(-1) from the most accurate ab initio calculations.  相似文献   

19.
The conformational preferences and infrared and ultraviolet spectral signatures of two model beta-peptides, Ac-beta3-hPhe-beta3-hAla-NHMe (1) and Ac-beta3-hAla-beta3-hPhe-NHMe (2), have been explored under jet-cooled, isolated-molecule conditions. The mass-resolved, resonant two-photon ionization spectra of the two molecules were recorded in the region of the S0-S1 origin of the phenyl substituents (37,200-37,800 cm(-1)). UV-UV hole-burning spectroscopy was used to determine the ultraviolet spectral signatures of five conformational isomers of both 1 and 2. Transitions due to two conformers (labeled A and B) dominate the R2PI spectra of each molecule, while the other three are minor conformers (C-E) with transitions a factor of 3-5 smaller. Resonant ion-dip infrared spectroscopy was used to obtain single-conformation infrared spectra in the 3300-3700 cm(-1) region. The infrared spectra showed patterns of NH stretch transitions characteristic of the number and type of intramolecular H-bonds present in the beta-peptide backbone. For comparison with experiment, full optimizations of low-lying minima of both molecules were carried out at DFT B3LYP/6-31+G*, followed by single point MP2/6-31+G* and selected MP2/aug-cc-pVDZ calculations at the DFT optimized geometries. Calculated harmonic vibrational frequencies and infrared intensities for the amide NH stretch vibrations were used to determine the beta-peptide backbone structures for nine of the ten observed conformers. Conformers 1B, 1D, and 2A were assigned to double ring structures containing two C6 H-bonded rings (C6a/C6a), conformers 1A and 2B are C10 single H-bonded rings, conformers 1C and 2D are double ring structures composed of two C8 H-bonded rings (C8/C8), and conformers 1E and 2E are double ring/double acceptor structures in which two NH groups H-bond to the same C=O group, thereby weakening both H-bonds. Both 1E and 2E are tentatively assigned to C6/C8 double ring/double acceptor structures, although C8/C12 structures cannot be ruled out unequivocally. Finally, no firm conformational assignment has been made for conformer 2C whose unusual infrared spectrum contains one very strong H-bond with NH stretch frequency at 3309 cm(-1), a second H-bonded NH stretch fundamental of more typical value (3399 cm(-1)), and a third fundamental at 3440 cm(-1), below that typical of a branched-chain free NH. The single conformation spectra provide characteristic wavenumber ranges for the amide NH stretch fundamentals ascribed to C6 (3378-3415 cm(-1)), C8 (3339-3369 cm(-1)), and C10 (3381-3390 cm(-1)) H-bonded rings.  相似文献   

20.
The microwave spectrum of 3-butyne-1-selenol has been studied by means of Stark-modulation microwave spectroscopy and quantum chemical calculations employing the B3LYP/aug-cc-pVTZ and MP2/6-311++G(3df,3pd) methods. Rotational transitions attributable to the H80SeCH2CH2C[triple bond]CH and H78SeCH2CH2C[triple bond]CH isotopologues of two conformers of this molecule were assigned. One of these conformers possesses an antiperiplanar arrangement for the atoms Se-C-C-C, while the other is synclinal and seems to be stabilized by the formation of a weak intramolecular hydrogen bond between the hydrogen atom of the selenol group and the pi electrons of the CC triple bond. The energy difference between these conformers was determined to be 0.2(5) kJ/mol by relative intensity measurements, and the hydrogen-bonded form was slightly lower in energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号