首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The main result of this paper is that point sets of PG(n, q), q = p 3h , p ≥ 7 prime, of size < 3(q n-1 + 1)/2 intersecting each line in 1 modulo ${\sqrt[3] q}$ points (these are always small minimal blocking sets with respect to lines) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p 3), p ≥ 7 prime, of size < 3(p 3(n-1) + 1)/2 with respect to lines are always linear.  相似文献   

2.
It is proved that a k–set of type (q + 1, n)2 in PG(3, q) either is a plane or it has size k ≥ (q + 1)2 and a characterization of some sets of size (q + 1)2 is given.  相似文献   

3.
We prove that a small minimal blocking set of PG(2,q) is “very close” to be a linear blocking set over some subfield GF(pe)<GF(q). This implies that (i) a similar result holds in PG(n,q) for small minimal blocking sets with respect to k-dimensional subspaces (0?k?n) and (ii) most of the intervals in the interval-theorems of Sz?nyi and Sz?nyi-Weiner are empty.  相似文献   

4.
This article presents a spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd. We prove that for every integer k in an interval of, roughly, size [q 2/4, 3q 2/4], there exists such a minimal blocking set of size k in PG(3, q), q odd. A similar result on the spectrum of minimal blocking sets with respect to the planes of PG(3, q), q even, was presented in Rößing and Storme (Eur J Combin 31:349–361, 2010). Since minimal blocking sets with respect to the planes in PG(3, q) are tangency sets, they define maximal partial 1-systems on the Klein quadric Q +(5, q), so we get the same spectrum result for maximal partial 1-systems of lines on the Klein quadric Q +(5, q), q odd.  相似文献   

5.
This article discusses minimal s-fold blocking sets B in PG (n, q), q = ph, p prime, q > 661, n > 3, of size |B| > sq + c p q 2/3 - (s - 1) (s - 2)/2 (s > min (c p q 1/6, q 1/4/2)). It is shown that these s-fold blocking sets contain the disjoint union of a collection of s lines and/or Baer subplanes. To obtain these results, we extend results of Blokhuis–Storme–Szönyi on s-fold blocking sets in PG(2, q) to s-fold blocking sets having points to which a multiplicity is given. Then the results in PG(n, q), n 3, are obtained using projection arguments. The results of this article also improve results of Hamada and Helleseth on codes meeting the Griesmer bound.  相似文献   

6.
Let $\mathcal S$ be a Desarguesian (n – 1)-spread of a hyperplane Σ of PG(rn, q). Let Ω and ${\bar B}$ be, respectively, an (n – 2)-dimensional subspace of an element of $\mathcal S $ and a minimal blocking set of an ((r – 1)n + 1)-dimensional subspace of PG(rn, q) skew to Ω. Denote by K the cone with vertex Ω and base ${\bar B}$ , and consider the point set B defined by $$B=\left(K\setminus\Sigma\right)\cup \{X\in \mathcal S\, : \, X\cap K\neq \emptyset\}$$ in the Barlotti–Cofman representation of PG(r, q n ) in PG(rn, q) associated to the (n – 1)-spread $\mathcal S$ . Generalizing the constructions of Mazzocca and Polverino (J Algebraic Combin, 24(1):61–81, 2006), under suitable assumptions on ${\bar B}$ , we prove that B is a minimal blocking set in PG(r, q n ). In this way, we achieve new classes of minimal blocking sets and we find new sizes of minimal blocking sets in finite projective spaces of non-prime order. In particular, for q a power of 3, we exhibit examples of r-dimensional minimal blocking sets of size q n+2 + 1 in PG(r, q n ), 3 ≤ r ≤ 6 and n ≥ 3, and of size q 4 + 1 in PG(r, q 2), 4 ≤ r ≤ 6; actually, in the second case, these blocking sets turn out to be the union of q 3 Baer sublines through a point. Moreover, for q an even power of 3, we construct examples of minimal blocking sets of PG(4, q) of size at least q 2 + 2. From these constructions, we also get maximal partial ovoids of the hermitian variety H(4, q 2) of size q 4 + 1, for any q a power of 3.  相似文献   

7.
In this paper, we show that a small minimal blocking set with exponent e in PG(n, p t ), p prime, spanning a (t/e ? 1)-dimensional space, is an ${\mathbb{F}_{p^e}}$ -linear set, provided that p > 5(t/e)?11. As a corollary, we get that all small minimal blocking sets in PG(n, p t ), p prime, p > 5t ? 11, spanning a (t ? 1)-dimensional space, are ${\mathbb{F}_p}$ -linear, hence confirming the linearity conjecture for blocking sets in this particular case.  相似文献   

8.
Letm2(3,q) be the largest value ofk(k<q 2+1) for which there exists a completek-cap in PG(3,q),q even. In this paper, the known upper bound onm2(3,q) is improved. We also describe a number of intervals, fork, for which there does not exist a completek-cap in PG(3,q),q even. These results are then used to improve the known upper bounds on the number of points of a cap in PG(n, q),q even,n?4.  相似文献   

9.
We prove that (q 2, 2)-arcs exist in the projective Hjelmslev plane PHG(2, R) over a chain ring R of length 2, order |R| = q 2 and prime characteristic. For odd prime characteristic, our construction solves the maximal arc problem. For characteristic 2, an extension of the above construction yields the lower bound q 2 + 2 on the maximum size of a 2-arc in PHG(2, R). Translating the arcs into codes, we get linear [q 3, 6, q 3 ?q 2 ?q] codes over ${\mathbb {F}_q}$ for every prime power q > 1 and linear [q 3 + q, 6,q 3 ?q 2 ?1] codes over ${\mathbb {F}_q}$ for the special case q = 2 r . Furthermore, we construct 2-arcs of size (q + 1)2/4 in the planes PHG(2, R) over Galois rings R of length 2 and odd characteristic p 2.  相似文献   

10.
We prove that the tame automorphism group TAut(M n ) of a free metabelian Lie algebra M n in n variables over a field k is generated by a single nonlinear automorphism modulo all linear automorphisms if n ≥ 4 except the case when n = 4 and char(k) ≠ 3. If char(k) = 3, then TAut(M 4) is generated by two automorphisms modulo all linear automorphisms. We also prove that the tame automorphism group TAut(M 3) cannot be generated by any finite number of automorphisms modulo all linear automorphisms.  相似文献   

11.
Linear sets generalise the concept of subgeometries in a projective space. They have many applications in finite geometry. In this paper we address two problems for linear sets: the equivalence problem and the intersection problem. We consider linear sets as quotient geometries and determine the exact conditions for two linear sets to be equivalent. This is then used to determine in which cases all linear sets of rank 3 of the same size on a projective line are (projectively) equivalent. In (Donati and Durante, Des Codes Cryptogr, 46:261–267), the intersection problem for subgeometries of PG(n, q) is solved. The intersection of linear sets is much more difficult. We determine the intersection of a subline PG(1, q) with a linear set in PG(1, q h ) and investigate the existence of irregular sublines, contained in a linear set. We also derive an upper bound, which is sharp for odd q, on the size of the intersection of two different linear sets of rank 3 in PG(1, q h ).  相似文献   

12.
Examples are constructed of planar matroids with finite prime-field characteristic sets (i.e. matroids representable over a finite set of prime fields but over fields of no other characteristic). In particular, for any n>3, a projectively unique integer matrix is constructed with 2lsqblog2nrsqb+6 columns which often gives nonsingleton characteristic sets and, when n is prime, has characteristic set {n}. Many finite subsets of primes are shown to be characteristic sets, including {23,59} (the smallest pair found using these methods), all pairs of primes {p, p′:67?p<p′?293}, and the seventeen largest five-digit primes. Probabilistic arguments are presented to support the conjecture that prime-field characteristic sets exist of every finite cardinality. For p>3, AG(2,p) is shown to be a subset of PG(2, q) only for q=ps. Another general construction technique suggests that when P={p1,…,pk} are the primitive prime divisors of 2n±1 (n sufficiently large), then there is a matroid with O (log n) points whose characteristic set is P. We remark that although only one finite nonsingleton characteristic set (due to R. Reid) was known prior to this paper, a new technique by J. Kahn has shown that every finite set of primes forms a (non-prime-field) characteristic set.  相似文献   

13.
In this paper, we consider new results on (k, n)-caps with n > 2. We provide a lower bound on the size of such caps. Furthermore, we generalize two product constructions for (k, 2)-caps to caps with larger n. We give explicit constructions for good caps with small n. In particular, we determine the largest size of a (k, 3)-cap in PG(3, 5), which turns out to be 44. The results on caps in PG(3, 5) provide a solution to four of the eight open instances of the main coding theory problem for q = 5 and k = 4.  相似文献   

14.
More than thirty new upper bounds on the smallest size t 2(2, q) of a complete arc in the plane PG(2, q) are obtained for (169 ≤ q ≤ 839. New upper bounds on the smallest size t 2(n, q) of the complete cap in the space PG(n, q) are given for n = 3 and 25 ≤ q ≤ 97, q odd; n = 4 and q = 7, 8, 11, 13, 17; n = 5 and q = 5, 7, 8, 9; n = 6 and q = 4, 8. The bounds are obtained by computer search for new small complete arcs and caps. New upper bounds on the largest size m 2(n, q) of a complete cap in PG(n, q) are given for q = 4, n = 5, 6, and q = 3, n = 7, 8, 9. The new lower bound 534 ≤ m 2(8, 3) is obtained by finding a complete 534-cap in PG(8, 3). Many new sizes of complete arcs and caps are obtained. The updated tables of upper bounds for t 2(n, q), n ≥ 2, and of the spectrum of known sizes for complete caps are given. Interesting complete caps in PG(3, q) of large size are described. A proof of the construction of complete caps in PG(3, 2 h ) announced in previous papers is given; this is modified from a construction of Segre. In PG(2, q), for q = 17, δ = 4, and q = 19, 27, δ = 3, we give complete ${(\frac{1}{2}(q + 3) + \delta)}$ -arcs other than conics that share ${\frac{1}{2}(q + 3)}$ points with an irreducible conic. It is shown that they are unique up to collineation. In PG(2, q), ${{q \equiv 2}}$ (mod 3) odd, we propose new constructions of ${\frac{1}{2} (q + 7)}$ -arcs and show that they are complete for q ≤ 3701.  相似文献   

15.
We define a mixed partition of Π =  PG(d, q r ) to be a partition of the points of Π into subspaces of two distinct types; for instance, a partition of PG(2n ? 1, q 2) into (n ? 1)-spaces and Baer subspaces of dimension 2n ? 1. In this paper, we provide a group theoretic method for constructing a robust class of such partitions. It is known that a mixed partition of PG(2n ? 1, q 2) can be used to construct a (2n ? 1)-spread of PG(4n ? 1, q) and, hence, a translation plane of order q 2n . Here we show that our partitions can be used to construct generalized Andrè planes, thereby providing a geometric representation of an infinite family of generalized Andrè planes. The results are then extended to produce mixed partitions of PG(rn ? 1, q r ) for r ≥ 3, which lift to (rn ? 1)-spreads of PG(r 2 n ? 1, q) and hence produce $2-(q^{r^2n},q^{rn},1)$ (translation) designs with parallelism. These designs are not isomorphic to the designs obtained from the points and lines of AG(r, q rn ).  相似文献   

16.
We use the representation ${T_2(\mathcal{O})}$ for Q(4, q) to show that maximal partial ovoids of Q(4, q) of size q 2 ? 1, qp h , p an odd prime, h > 1, do not exist. Although this was known before, we give a slightly alternative proof, also resulting in more combinatorial information of the known examples for q an odd prime.  相似文献   

17.
Given a hermitian variety H(d,q2) and an integer k (d–1)/2, a blocking set with respect to k-subspaces is a set of points of H(d,q2) that meets all k-subspaces of H(d,q2). If H(d,q2) is naturally embedded in PG(d,q2), then linear examples for such a blocking set are the ones that lie in a subspace of codimension k of PG(d,q2). Up to isomorphism there are k+1 non-isomorphic minimal linear blocking sets, and these have different cardinalities. In this paper it is shown for 1 k< (d–1)/2 that all sufficiently small minimal blocking sets of H(d,q2) with respect to k-subspaces are linear. For 1 k< d/2–3, it is even proved that the k+1 minimal linear blocking sets are smaller than all minimal non-linear ones.AMS Classification: 1991 MSC: 51E20, 51E21  相似文献   

18.
This paper presents series of PBIB designs with m associate classes in which the treatment set is a subset of the Z(pm)-module of n × 1 vectors over the ring of integers modulo pm, p any prime. The association scheme of this series of designs is determined by the Fuller canonical form under row equivalence of n × 2 matrices [a,b] for vectors a and b in the treatment set. The blocking procedure utilizes full rank s × n matrices over Z(pm), 1 ? s ? n ? 2, n ? 3. For m = 2, n = 3, s =1 and for each prime p, each PBIB is regular divisible and yields a finite proper uniform projective Hjelmslev plane with parameters j = p and k = p(p + 1).  相似文献   

19.
We classify the smallest two fold blocking sets with respect to the (nk)-spaces in PG(n, 2). We show that they either consist of two disjoint k-dimensional subspaces or are equal to a (k + 1)-dimensional space minus one point.  相似文献   

20.
Let q be a power of a prime p, and let \(r=nk+1\) be a prime such that \(r\not \mid q\), where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (nk) is a normal element of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\); the complexity of the resulting normal basis of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\) is denoted by C(nkp). Recent works determined C(nkp) for \(k\le 7\) and all qualified n and q. In this paper, we show that for any given \(k>0\), C(nkp) is given by an explicit formula except for finitely many primes \(r=nk+1\) and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(nkp) for the exceptional primes \(r=nk+1\). Our numerical results cover C(nkp) for \(k\le 20\) and all qualified n and q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号