首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The manganese(V) imido complex [(TBP8Cz)Mn(V)(NMes)] (2) was synthesized from the Mn(III) complex [(TBP8Cz)Mn(III)] (1) and thermolysis of mesityl azide. An X-ray structure of 2 reveals a short Mn-N distance [1.595(4) A], consistent with the Mn-N triple bond expected for a manganese(V) imido species. This high-valent species is remarkably inert to one- and two-electron reductive processes such as NR group transfer to alkenes or H-atom abstraction from O-H bonds. Electrochemical studies support this lack of reactivity. In contrast, oxidation of 2 is easily accomplished by treatment with [(4-BrC6H4)3N]*+SbCl6, giving a pi-radical-cation complex.  相似文献   

2.
The direct conversion of a Mn(III) complex [(TBP(8)Cz)Mn(III) (1)] to a Mn(V)-oxo complex [(TBP(8)Cz)Mn(V)(O) (2)] with O(2) and visible light is reported. Complex 1 is also shown to function as an active photocatalyst for the oxidation of PPh(3) to OPPh(3). Mechanistic studies indicate that the photogeneration of 2 does not involve singlet oxygen but rather likely occurs via a free-radical mechanism upon photoactivation of 1.  相似文献   

3.
High-valent metal-oxo complexes are postulated as key intermediates for a wide range of enzymatic and synthetic processes. To gain an understanding of these processes, the reactivity of an isolated, well-characterized Mn(V)-oxo complex, (TBP8Cz)MnVO (1), (TBP8Cz = octakis(para-tert-butylphenyl)corrolazinato(3-)) has been examined. This complex has been shown to oxidize a series of substituted phenols (4-X-2,6-t-Bu2C6H2OH, X = C(CH3)3 (3), H, Me, OMe, CN), resulting in the production of phenoxyl radicals and the MnIII complex [(TBP8Cz)MnIII] (2). Kinetic studies have led to the determination of second-order rate constants for the phenol substrates, which give a Hammett correlation ((log k'x/k'H) vs sigmap+) with rho = -1.26. A plot of log k versus BDE(O-H) also reveals a linear correlation. These data, combined with a KIE of 5.9 for 3-OD, provide strong evidence for a concerted hydrogen-atom-abstraction mechanism. Substrates with C-H bonds (1,4-cyclohexadiene and 9,10-dihydroanthracene) are also oxidized via H-atom abstraction by 1, although at a much slower rate. Given the stability of 1, and in particular its low redox potential, (-0.05 V vs SCE), the observed H atom abstraction ability is surprising. These findings support a hypothesis regarding how certain heme enzymes can perform difficult H-atom abstractions while avoiding the generation of high-valent metal-oxo intermediates with oxidation potentials that would lead to the destruction of the surrounding protein environment.  相似文献   

4.
The electron-transfer and hydride-transfer properties of an isolated manganese(V)?oxo complex, (TBP8Cz)Mn(V)(O) (1) (TBP8Cz = octa-tert-butylphenylcorrolazinato) were determined by spectroscopic and kinetic methods. The manganese(V)?oxo complex 1 reacts rapidly with a series of ferrocene derivatives ([Fe(C5H4Me)2], [Fe(C5HMe4)2], and ([Fe(C5Me5)2] = Fc*) to give the direct formation of [(TBP8Cz)Mn(III)(OH)]? ([2-OH]?), a two-electron-reduced product. The stoichiometry of these electron-transfer reactions was found to be (Fc derivative)/1 = 2:1 by spectral titration. The rate constants of electron transfer from ferrocene derivatives to 1 at room temperature in benzonitrile were obtained, and the successful application of Marcus theory allowed for the determination of the reorganization energies (λ) of electron transfer. The λ values of electron transfer from the ferrocene derivatives to 1 are lower than those reported for a manganese(IV)?oxo porphyrin. The presumed one-electron-reduced intermediate, a Mn(IV) complex, was not observed during the reduction of 1. However, a Mn(IV) complex was successfully generated via one-electron oxidation of the Mn(III) precursor complex 2 to give [(TBP8Cz)Mn(IV)]+ (3). Complex 3 exhibits a characteristic absorption band at λ(max) = 722 nm and an EPR spectrum at 15 K with g(max)′ = 4.68, g(mid)′ = 3.28, and g(min)′ = 1.94, with well-resolved 55Mn hyperfine coupling, indicative of a d3 Mn(IV)S = 3/2 ground state. Although electron transfer from [Fe(C5H4Me)2] to 1 is endergonic (uphill), two-electron reduction of 1 is made possible in the presence of proton donors (e.g., CH3CO2H, CF3CH2OH, and CH3OH). In the case of CH3CO2H, saturation behavior for the rate constants of electron transfer (k(et)) versus acid concentration was observed, providing insight into the critical involvement of H+ in the mechanism of electron transfer. Complex 1 was also shown to be competent to oxidize a series of dihydronicotinamide adenine dinucleotide (NADH) analogues via formal hydride transfer to produce the corresponding NAD+ analogues and [2-OH]?. The logarithms of the observed second-order rate constants of hydride transfer (k(H)) from NADH analogues to 1 are linearly correlated with those of hydride transfer from the same series of NADH analogues to p-chloranil.  相似文献   

5.
The novel cobalt corrolazine (Cz) complexes (TBP)(8)CzCoCN (1) and (TBP)(8)CzCo(CCSiPh(3)) (2) have been synthesized and examined in light of the recent intense interest regarding the role of corrole ligands in stabilizing high oxidation states. In the case of 2, the molecular structure has been determined by X-ray crystallography, revealing a short Co[bond]C distance of 1.831(4) A and an intermolecular pi-stacking interaction between Cz ring planes, and this structure has been analyzed in regards to the electronic configuration. By a combination of spectroscopic techniques it has been shown that 1 is best described as a cobalt(III)[bond]pi-cation-radical complex, whereas 2 is likely best represented as the resonance hybrid (Cz)Co(IV)(CCSiPh(3)) <--> (Cz+*)Co(III)(CCSiPh(3)). The reduced cobalt(II) complex, [(TBP)(8)CzCo(II)(py)](-), has been generated in situ and shown to bind dioxygen at low temperature to give [(TBP)(8)CzCo(III)(py)(O(2))](-). For the reduced complex [(TBP)(8)CzCo(II)(py)](-), the EPR spectrum in frozen solution is indicative of a low-spin cobalt(II) complex with a d(z)2 ground state. Exposure of [(TBP)(8)CzCo(II)(py)](-) to O(2) leads to the reversible formation of the cobalt(III)-superoxo complex [(TBP)(8)CzCo(III)(py)(O(2))](-), which has been characterized by EPR spectroscopy. VT-EPR measurements show that the dioxygen adduct is stable up to T approximately 240 K. This work is the first observation, to our knowledge, of O(2) binding to a cobalt(II) corrole.  相似文献   

6.
Hung SW  Yang FA  Chen JH  Wang SS  Tung JY 《Inorganic chemistry》2008,47(16):7202-7206
The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.2(0.2MeOH)] and paramagnetic bromo(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N')-manganese(III) [Mn(2-NCH 3NCTPP)Br; 5] were determined. The coordination sphere around Sn (4+) in 6.2(0.2MeOH) is described as six-coordinate octahedron ( OC-6) in which the apical site is occupied by two transoid Cl (-) ligands, whereas for the Mn (3+) ion in 5, it is a five-coordinate square pyramid ( SPY-5) in which the unidentate Br (-) ligand occupies the axial site. The g value of 9.19 (or 10.4) measured from the parallel polarization (or perpendicular polarization) of X-band EPR spectra at 4 K is consistent with a high spin mononuclear manganese(III) ( S = 2) in 5. The magnitude of axial ( D) and rhombic ( E) zero-field splitting (ZFS) for the mononuclear Mn(III) in 5 were determined approximately as -2.4 cm (-1) and -0.0013 cm (-1), respectively, by paramagnetic susceptibility measurements and conventional EPR spectroscopy. Owing to weak C(45)-H(45A)...Br(1) hydrogen bonds, the mononuclear Mn(III) neutral molecules of 5 are arranged in a one-dimensional network. A weak Mn(III)...Mn(III) ferromagnetic interaction ( J = 0.56 cm (-1)) operates via a [Mn(1)-C(2)-C(1)-N(4)-C(45)-H(45A)...Br(1)-Mn(1)] superexchange pathway in complex 5.  相似文献   

7.
The synthesis and characterization of an oxomanganese(V) corrolazine, (TBP)8(Cz)Mn(V)O (2), are reported. This remarkably stable high-valent complex is obtained from the stoichiometric reaction of (TBP)8(Cz)Mn(III) (1) with m-CPBA and is easily purified by standard chromatographic methods on silica gel at room temperature. Complex 2 exhibits a diamagnetic 1H NMR spectrum indicative of a low-spin d2 Mn(V)O species. LDI-TOFMS of 2 shows the predicted isotopic envelope at m/z 1426.8. This envelope shifts to higher mass as expected after the facile exchange of the terminal oxo group with H218O. The resonance Raman spectrum of 2 either in solution or in the solid state shows a strongly enhanced Raman band for the stretching mode of the Mn-oxo bond, which also shifts as expected upon 18O substitution: 2(16O), 979 cm-1; 2(18O), 938 cm-1 (in CH2Cl2). Initial reactivity studies show that 2 rapidly transfers the terminal oxo ligand to PPh3, resulting in the quantitative formation of OPPh3 and concomitant reduction of 2 back to 1. Complex 2 is the first example of an oxomanganese(V)-porphyrinoid complex that can be isolated at room temperature.  相似文献   

8.
As part of our efforts to develop the transition metal chemistry of corrolazines, which are ring-contracted porphyrinoid species most closely related to corroles, the vanadium and copper complexes (TBP)(8)Cz(H)V(IV)O (1) and (TBP)(8)CzCu(III) (2) of the ligand octakis(para-tert-butylphenyl)corrolazine [(TBP)(8)Cz] have been synthesized. The coordination behavior, preferred oxidation states, and general redox properties of metallocorrolazines are of particular interest. The corrolazine ligand in 1 was shown to contain a labile proton by acid/base titration and IR spectroscopy, serving as a -2 ligand rather than as the usual -3 donor. The oxidation state of the vanadium center in 1 was shown to be +4, in agreement with the overall neutral charge for this complex. The EPR spectrum of 1 reveals a rich signal consistent with a V(IV)(O) (d(1), S = 1/2) porphyrinoid species (g(xx) = 1.989, g(yy) = 1.972, g(zz) = 1.962). The electrochemical analysis of 1 shows behavior closer to that of a porphyrazine than a corrolazine, with a positively shifted, irreversible reduction at -0.65 V (vs Ag/AgCl). Resonance Raman and IR data for 1 confirm the presence of a triply bonded terminal oxo ligand with nu(V(16)O) = 975 cm(-1) and nu(V(18)O) = 939 cm(-1). The copper complex 2 exhibits a diamagnetic (1)H NMR spectrum, indicative of a bona fide square planar copper(III) (d(8), low-spin) complex. Previously reported copper corroles have been characterized as copper(III) complexes which exhibit a paramagnetic NMR spectrum at higher temperatures, indicative of a thermally accessible triplet excited state ([(corrole(*+))Cu(II)]). The NMR spectrum for 2 shows no paramagnetic behavior in the range 300-400 K, indicating that compound 2 does not have a thermally accessible triplet excited state. These data show that the corrolazine system is better able to stabilize the high oxidation state copper center than the corresponding corroles. Electrochemical studies of 2 reveal two reversible processes at +0.93 and -0.05 V, and bulk reduction of 2 with NaBH(4) generates the copper(II) species [(TBP)(8)CzCu(II)](-) (2a), which exhibits an EPR signal typical of a copper(II) porphyrinoid species.  相似文献   

9.
The complex [Mn(dbm)(2)(py)(2)](ClO(4)) (dbm = anion of 1,3-diphenyl-1,3-propanedione (dibenzoylmethane), py = pyridine) was synthesized and characterized by X-ray crystallography. It has tetragonally distorted geometry with the axial positions occupied by the py ligands and the equatorial positions by the dbm ligands. This mononuclear complex of high-spin Mn(III) (3d(4), S = 2) was studied by high-frequency and -field electron paramagnetic resonance (HFEPR) both as a solid powder and in frozen dichloromethane solution. Very high quality HFEPR spectra were recorded over a wide range of frequencies. The complete dataset of resonant magnetic fields versus transition energies was analyzed using automated fitting software. This analysis yielded the following spin Hamiltonian parameters (energies in cm(-1)): D = -4.504(2), E = -0.425(1), B(4)(0) = -1.8(4) x 10(-4), B(4)(2) = 7(3) x 10(-4), B(4)(4) = 48(4) x 10(-4), g(x) = 1.993(1), g(y) = 1.994(1), and g(z) = 1.983(1), where the B(4)(n) values represent fourth-order zero-field splitting terms that are generally very difficult to extract, even from single-crystal measurements. The results here demonstrate the applicability of HFEPR at high-precision measurements, even for powder samples. The zero-field splitting parameters determined here for [Mn(dbm)(2)(py)(2)](+) are placed into the context of those determined for other mononuclear complexes of Mn(III).  相似文献   

10.
Reactions of [W(CN)(8)](3-/4-) anions with complexes of Mn(2+) ion with tridentate organic ligand 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) lead to a series of heterobimetallic complexes. The crystal structures of these compounds are derived from the same basic structural fragment, namely a W(2)Mn(2) square constructed of alternating cyanide-bridged W and Mn ions. In [Mn(II)(tptz)(OAc)(H(2)O)(2)](2){[Mn(II)(tptz)(MeOH)(1.58)(H(2)O)(0.42)](2)[W(V)(CN)(8)](2)}.5 MeOH.9.85 H(2)O (3), isolated molecular squares are co-crystallized with mononuclear cationic Mn(II) complexes. The structure of {[Mn(II)(tptz)(MeOH)](2)[W(IV)(CN)(8)].2 MeOH}(infinity) (4) is based on an infinite chain of vertex-sharing squares, while {[Mn(II) (2)(tptz)(2)(MeOH)(3)(OAc)][W(V)(CN)(8)].3.5 MeOH0.25 H(2)O}(infinity) (5) and {[Mn(II) (2)(tptz)(2)(MeOH)(3)W(V)(CN)(8)][Mn(II)(tptz)(MeOH)W(V)(CN)(8)].2 H(2).OMeOH}(8) (7) are derived from such an infinite chain by removing one of the W-C[triple bond]N-Mn linkages in each of the squares. The decanuclear cluster [Mn(II) (6)(tptz)(6)(MeOH)(4)(DMF)(2)W(V) (4)(CN)(32)].8.2 H(2)O.2.3 MeOH (6) is a truncated version of structure 4 and consists of three vertex-sharing W(2)Mn(2) squares. The structure of [Mn(II)(tptz)(MeOH)(NO(3))](2)[Mn(II)(tptz)(MeOH) (DMF)](2)[W(V)(CN)(8)](2).6 MeOH (8) consists of a hexanuclear cluster, in which the central W(2)Mn(2) square is extended by two Mn side-arms attached via CN(-) ligands to the W corners of the square. The magnetic behavior of these heterobimetallic complexes (except for 4) is dominated by antiferromagnetic coupling between Mn(II) and W(V) ions mediated by cyanide bridges. Compounds 3, 6, and 8 exhibit high spin ground states of S=4, 13, and 9, respectively, while 5 and 7 exhibit behavior typical of a ferrimagnetic chain with alternating spin centers. Complex 4 contains diamagnetic W(IV) centers but holds promise as a potential photomagnetic solid.  相似文献   

11.
The synthesis, crystal structure, and magnetic properties of three new manganese(III) clusters are reported, [Mn 3(mu 3-O)(phpzH) 3(MeOH) 3(OAc)] (1), [Mn 3(mu 3-O)(phpzMe) 3(MeOH) 3(OAc)].1.5MeOH (2), and [Mn 3(mu 3-O)(phpzH) 3(MeOH) 4(N 3)].MeOH (3) (H 2phpzH = 3(5)-(2-hydroxyphenyl)-pyrazole and H 2phpzMe = 3(5)-(2-hydroxyphenyl)-5(3)-methylpyrazole). Complexes 1- 3 consist of a triangle of manganese(III) ions with an oxido-center bridge and three ligands, phpzR (2-) (R = H, Me) that form a plane with the metal ions. All the complexes contain the same core with the general formula [Mn 3(mu 3-O)(phpzR) 3] (+). Methanol molecules and additional bridging ligands, that is, acetate (complexes 1 and 2) and azide (complex 3), are at the terminal positions. Temperature dependent magnetic susceptibility studies indicate the presence of predominant antiferromagnetic intramolecular interactions between manganese(III) ions in 1 and 3, while both antiferromagnetic and ferromagnetic intramolecular interactions are operative in 2.  相似文献   

12.
XANES and EXAFS spectroscopic studies at the Mn-K- and Br-K-edge of reaction products of (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ([(salen)Mn(III)Cl], 1) and (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) bromide ([(salen)Mn(III)Br], 2) with 4-phenylpyridine N-oxide (4-PPNO) and 3-chloroperoxybenzoic acid (MCPBA) are reported. The reaction of the Mn(III) complexes with two equivalents of 4-PPNO leads to a hexacoordinated compound, in which the manganese atom is octahedrally coordinated by four oxygen/nitrogen atoms of the salen ligand at an average distance of approximately 1.90 A and two additional, axially bonded oxygen atoms of the 4-PPNO at 2.25 A. The oxidation state of this complex was determined as approximately +IV by a comparative study of Mn(III) and Mn(V) reference compounds. The green intermediate obtained in reactions of MCPBA and solutions of 1 or 2 in acetonitrile was investigated with XANES, EXAFS, UV/Vis, and Raman spectroscopy, and an increase of the coordination number of the manganese atoms from 4 to 5 and the complete abstraction of the halide was observed. A formal oxidation state of IV was deduced from the relative position of the pre-edge 1s-->3d feature of the X-ray absorption spectrum of the complex. The broad UV/Vis band of this complex in acetonitrile with lambda(max)=648 nm was consistent with a radical cation structure, in which a MCPBA molecule was bound to the Mn(IV) central atom. An oxomanganese(V) or a dimeric manganese(IV) species was not detected.  相似文献   

13.
A novel monomeric tetravalent manganese complex with the cross-bridged cyclam ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (Me2EBC), [Mn(IV)(Me2EBC)(OH)2](PF6)2, was synthesized by oxidation of Mn(II)(Me2EBC)Cl2 with H2O2 in the presence of NH4PF6)in aqueous solution. The X-ray crystal structure determination of this manganese(IV) compound revealed that it contains two rare terminal hydroxo ligands. EPR studies in dry acetonitrile at 77 K show two broad resonances at g = 1.96 and 3.41, indicating that the manganese(IV) exists as a high-spin d3 species. Resonance Raman (rR) spectra of this manganese(IV) species reveal that the dihydroxy moiety, Mn(IV)(OH)2, is also the dominant species in aqueous solution (pH < 7). pH titration provides two pK(a) values, 6.86(4) and 10.0(1), associated with stepwise removal of the last two oxygen-bound protons from [Mn(IV)(Me2EBC)(OH)2](2+). The cyclic voltammetry of this manganese(IV) complex in dry acetonitrile at 298 K demonstrates two reversible redox processes at +0.756 and -0.696 V (versus SHE) for the Mn4+/Mn3+ and Mn3+/Mn2+ couples, respectively. This manganese(IV) complex is relatively stable in weak acidic aqueous solution but easily degrades in basic solution to manganese(III) derivatives with an 88 +/- 1% yield.  相似文献   

14.
The reaction between (TBP)8(Cz)Mn(III) (1) and the oxygen atom donors iodosylbenzene (PhIO) or p-cyanodimethylaniline-N-oxide (CDMANO) leads to the manganese(V)-oxo complex (TBP)8(Cz)Mn(V)O (2), which has been isolated and characterized previously. Under catalytic conditions with 1 as added catalyst and PhIO as oxidant, both sulfoxidation of PhSMe and epoxidation of cis-stilbene is observed, whereas with CDMANO no sulfoxidation takes place, suggesting that 2 is not the active oxidant. Examination of the independent reactivity of isolated 2 toward PhSMe and cis-stilbene supports this conclusion. A mechanism which relies on a novel type of oxidant involving Lewis acid activation of PhIO by the Mn(V)-oxo complex 2 accounts for these observations and is confirmed by 18O-labeling experiments.  相似文献   

15.
We report on the synthesis, molecular structure and magnetic properties of two novel coordination polymers: [{Cu(II)(4)(pic)(2)(H(2)O)(2)(MeOH)}{W(V)(CN)(8)}(2)]·MeOH·4H(2)O (1) and [{Mn(II)(3)(HCOO)(2)(H(2)O)(4)}{Mn(II)(H(2)O)(3)(HCONH(2))}(2){Nb(IV)(CN)(8)}(2)]·4HCONH(2)·2H(2)O (2). The single-crystal X-ray diffraction analysis of 1 shows that its molecular structure can be interpreted as a cyanido bridged (3,4,7)-connected 2D bilayer built of two different subnets sharing the tungsten centers. The magnetic measurements suggest that the system reveals long-range ferromagnetic ordering between Cu(II) and W(V) centers below 13.4 K. The molecular structure of (2) reveals a 2D topology of layers built of cyanido and formato bridging ligands. The system reveals ferrimagnetic behavior with a critical temperature at 17.8 K.  相似文献   

16.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

17.
The dinuclear MnIII complex [Mn2(mu-OAc)(mu-OMe)(5-Br-salpentO)(MeOH)2]Br has been prepared and its structure and reactivity toward H2O2 studied in comparison with [Mn2(mu-OAc)(mu-OMe)(salpentO)(MeOH)2]Br (salpent-OH = 1,5-bis(salicylidenamino)pentan-3-ol and 5-Br-salpentOH = 1,5-bis(5-bromesalicylidenaminopentan-3-ol). The X-ray diffraction analysis of [Mn2(mu-OAc)(mu-OMe)(5-Br-salpentO)(MeOH)2]Br (monoclinic, P21/n, a = 13.081(2) A, b = 13.429(2) A, c = 17.375(2) A, beta = 102.31(1) degrees, V = 2982.0 A3, Z = 4) revealed a mu-alkoxo, mu-acetatodimanganese(III) core with a Mn...Mn separation of 2.932(1) A. The ligand lies in the meridional plane, and the sixth coordination position of each manganese atom is occupied by a methanol molecule providing two substitution-labile sites in the cis position. The two complexes showed catalytic activity toward disproportionation of H2O2 in methanol and dimethylformamide in the 0-25 degrees C temperature range. The initial rate of oxygen evolution in the presence of [Mn2(mu-OAc)(mu-OMe)(5-Br-salpentO)(MeOH)2]Br or [Mn2(mu-OAc)(mu-OMe)(salpentO)(MeOH)2]-Br is first order in catalyst concentration. The two complexes show saturation kinetics in methanol, with the higher kcat = 0.98 s-1 and kcat/KM = 70 M-1 s-1 observed for [Mn2(mu-OAc)(mu-OMe)(salpentO)(MeOH)2]Br.  相似文献   

18.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

19.
Approximate density functional theory has been used to investigate changes in the geometry and electronic structure of the mixed oxo- and carboxylato-bridged dimers [Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)](n+)and [Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)](n+)in the Mn(IV)Mn(IV), Mn(III)Mn(IV), and Mn(III)Mn(III) oxidation states. The magnetic coupling in the dimer is profoundly affected by changes in both the bridging ligands and Mn oxidation state. In particular, change in the bridging structure has a dramatic effect on the nature of the Jahn-Teller distortion observed for the Mn(III) centers in the III/III and III/IV dimers. The principal magnetic interactions in [Mn(2)(mu-O)(2)(O(2)CH)(NH(3))(6)](n+)() involve the J(xz/xz)and J(yz/yz) pathways but due to the tilt of the Mn(2)O(2) core, they are less efficient than in the planar di-mu-oxo structure and, consequently, the calculated exchange coupling constants are generally smaller. In both the III/III and III/IV dimers, the Mn(III) centers are high-spin, and the Jahn-Teller effect gives rise to axially elongated Mn(III) geometries with the distortion axis along the Mn-O(c) bonds. In the III/IV dimer, the tilt of the Mn(2)O(2) core enhances the crossed exchange J(x)()()2(-)(y)()()2(/)(z)()()2 pathway relative to the planar di-mu-oxo counterpart, leading to significant delocalization of the odd electron. Since this delocalization pathway partially converts the Mn(IV) ion into low-spin Mn(III), the magnetic exchange in the ground state can be considered to arise from two interacting spin ladders, one is the result of coupling between Mn(IV) (S = 3/2) and high-spin Mn(III) (S = 2), the other is the result of coupling between Mn(IV) (S = 3/2) and low-spin Mn(III) (S = 1). In [Mn(2)(mu-O)(O(2)CH)(2)(NH(3))(6)](n+)(), both the III/III dimer and the lowest energy structure for the III/IV dimer involve high-spin Mn(III), but the Jahn-Teller axis is now orientated along the Mn-oxo bond, giving rise to axially compressed Mn(III) geometries with long Mn-O(c) equatorial bonds. In the IV/IV dimer, the ferromagnetic crossed exchange J(yz)()(/)(z)()()2 pathway partially cancels J(yz/yz) and, as a consequence, the antiferromagnetic J(xz/xz) pathway dominates the magnetic coupling. In the III/III dimer, the J(yz/yz) pathway is minimized due to the smaller Mn-O-Mn angle, and since the ferromagnetic J(yz)()(/)(z)()()2 pathway largely negates J(xz/xz), relatively weak overall antiferromagnetic coupling results. In the III/IV dimer, the structures involving high-spin and low-spin Mn(III) are almost degenerate. In the high-spin case, the odd electron is localized on the Mn(III) center, and the resulting antiferromagnetic coupling is similar to that found for the IV/IV dimer. In the alternative low-spin structure, the odd electron is significantly delocalized due to the crossed J(yz)()(/)(z)()()2 pathway, and cancellation between ferromagnetic and antiferromagnetic pathways leads to overall weak magnetic coupling. The delocalization partially converts the Mn(IV) ion into high-spin Mn(III), and consequently, the spin ladders arising from coupling of Mn(IV) (S = 3/2) with high-spin (S = 2) and low-spin (S = 1) Mn(III) are configurationally mixed. Thus, in principle, the ground-state magnetic coupling in the mixed-valence dimer will involve contributions from three spin-ladders, two associated with the delocalized low-spin structure and the third arising from the localized high-spin structure.  相似文献   

20.
Addition of the Lewis acid Zn(2+) to (TBP(8)Cz)Mn(V)(O) induces valence tautomerization, resulting in the formation of [(TBP(8)Cz(+?))Mn(IV)(O)-Zn(2+)]. This new species was characterized by UV-vis, EPR, the Evans method, and (1)H NMR and supported by DFT calculations. Removal of Zn(2+) quantitatively restores the starting material. Electron-transfer and hydrogen-atom-transfer reactions are strongly influenced by the presence of Zn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号