首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

2.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

3.
Let A be an expansive dilation on ${{\mathbb R}^n}$ and w a Muckenhoupt ${\mathcal A_\infty(A)}$ weight. In this paper, for all parameters ${\alpha\in{\mathbb R} }$ and ${p,q\in(0,\infty)}$ , the authors identify the dual spaces of weighted anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A;w)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A;w)}$ with some new weighted Besov-type and Triebel?CLizorkin-type spaces. The corresponding results on anisotropic Besov spaces ${\dot B^\alpha_{p,q}(A; \mu)}$ and Triebel?CLizorkin spaces ${\dot F^\alpha_{p,q}(A; \mu)}$ associated with ${\rho_A}$ -doubling measure??? are also established. All results are new even for the classical weighted Besov and Triebel?CLizorkin spaces in the isotropic setting. In particular, the authors also obtain the ${\varphi}$ -transform characterization of the dual spaces of the classical weighted Hardy spaces on ${{\mathbb R}^n}$ .  相似文献   

4.
We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has ${\overline{K}\not\le_{\rm ss} B}$ (respectively, ${\overline{K}\not\le_{\overline{\rm s}} B}$ ): here ${\le_{\overline{\rm s}}}$ is the finite-branch version of s-reducibility, ??ss is the computably bounded version of ${\le_{\overline{\rm s}}}$ , and ${\overline{K}}$ is the complement of the halting set. Restriction to ${\Sigma^0_2}$ sets provides a similar characterization of the ${\Sigma^0_2}$ hyperhyperimmune sets in terms of s-reducibility. We also show that no ${A \geq_{\overline{\rm s}}\overline{K}}$ is hyperhyperimmune. As a consequence, ${\deg_{\rm s}(\overline{K})}$ is hyperhyperimmune-free, showing that the hyperhyperimmune s-degrees are not upwards closed.  相似文献   

5.
Let ${\Omega=\Omega_{1}\times\cdots\times\Omega_{n}\subset\mathbb{C}^{n}}$ , where ${\Omega_{j}\subset\mathbb{C}}$ is a bounded domain with smooth boundary. We study the solution operator to the ${\overline\partial}$ -Neumann problem for (0,1)-forms on Ω. In particular, we construct singular functions which describe the singular behavior of the solution. As a corollary our results carry over to the ${\overline\partial}$ -Neumann problem for (0,q)-forms. Despite the singularities, we show that the canonical solution to the ${\overline\partial}$ -equation, obtained from the Neumann operator, does not exhibit singularities when given smooth data.  相似文献   

6.
Let ${\vartheta}$ be a measure on the polydisc ${\mathbb{D}^n}$ which is the product of n regular Borel probability measures so that ${\vartheta([r,1)^n\times\mathbb{T}^n) >0 }$ for all 0 < r < 1. The Bergman space ${A^2_{\vartheta}}$ consists of all holomorphic functions that are square integrable with respect to ${\vartheta}$ . In one dimension, it is well known that if f is continuous on the closed disc ${\overline{\mathbb{D}}}$ , then the Hankel operator H f is compact on ${A^2_\vartheta}$ . In this paper we show that for n ≥ 2 and f a continuous function on ${{\overline{\mathbb{D}}}^n}$ , H f is compact on ${A^2_\vartheta}$ if and only if there is a decomposition f = h + g, where h belongs to ${A^2_\vartheta}$ and ${\lim_{z\to\partial\mathbb{D}^n}g(z)=0}$ .  相似文献   

7.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

8.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

9.
For L a finite lattice, let ${\mathbb {C}(L) \subseteq L^2}$ denote the set of pairs γ = (γ 0, γ 1) such that ${\gamma_0 \prec \gamma_1}$ and order it as followsγδ iff γ 0δ 0, ${\gamma_{1} \nleq \delta_0,}$ and γ 1δ 1. Let ${\mathbb {C}(L, \gamma)}$ denote the connected component of γ in this poset. Our main result states that, for any ${\gamma, \mathbb {C}(L, \gamma)}$ is a semidistributive lattice if L is semidistributive, and that ${\mathbb {C}(L, \gamma)}$ is a bounded lattice if L is bounded. Let ${\mathcal{S}_{n}}$ be the Permutohedron on n letters and let ${\mathcal{T}_{n}}$ be the Associahedron on n + 1 letters. Explicit computations show that ${\mathbb {C}(\mathcal{S}_{n}, \alpha) = \mathcal{S}_{n-1}}$ and ${\mathbb {C}(\mathcal {T}_n, \alpha) = \mathcal {T}_{n-1}}$ , up to isomorphism, whenever α1 is an atom of ${\mathcal{S}_{n}}$ or ${\mathcal{T}_{n}}$ . These results are consequences of new characterizations of finite join-semidistributive and of finite lower bounded lattices: (i) a finite lattice is join-semidistributive if and only if the projection sending ${\gamma \in \mathbb {C}(L)}$ to ${\gamma_0 \in L}$ creates pullbacks, (ii) a finite join-semidistributive lattice is lower bounded if and only if it has a strict facet labelling. Strict facet labellings, as defined here, are a generalization of the tools used by Caspard et al. to prove that lattices of finite Coxeter groups are bounded.  相似文献   

10.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

11.
We study the Cox ring of the moduli space of stable pointed rational curves, ${\overline{M}_{0,n}}$ , via the closely related permutohedral (or Losev-Manin) spaces ${\overline{L}_{n-2}}$ . Our main result establishes $\left(\begin{array}{ll} n \\ 2 \end{array}\right)$ polynomial subrings of ${{\rm Cox}(\overline{M}_{0,n})}$ , thus giving collections of boundary variables that intersect the ideal of relations of ${{\rm Cox}(\overline{M}_{0,n})}$ trivially. As applications, we give a combinatorial way to partially solve the Riemann-Roch problem for ${\overline{M}_{0,n}}$ , and we show that all relations in degrees of ${{\rm Cox}(\overline{M}_{0,6})}$ arising from certain pull-backs from projective spaces are generated by the Plücker relations.  相似文献   

12.
13.
In this paper we solve the ${\overline{\partial }}$ -problem along the leaves for two types of laminations: (i) Some open sets Ω of ${{\mathbb C}\times B}$ (where B is any differentiable manifold) endowed with the canonical foliation that is, the foliation whose leaves are the sections ${\Omega ^t=\{ z\in {\mathbb C}:(z,t)\in \Omega \}}$ . We construct a solution to the equation ${\overline{\partial }h=fd\overline z}$ for any function ${f:\Omega\longrightarrow {\mathbb C}}$ of class ${C^{s}\,(s\in \mathbb{N}\cup\{ \infty \}),\,C^\infty}$ along the leaves and satisfies some growth conditions near the singularities. (ii) A complex lamination by Riemann surfaces obtained by suspending a homeomorphism of a closed set of the Euclidean space ${\mathbb{C}\times \mathbb{R}}$ .  相似文献   

14.
15.
We introduce the notion of crystallographic number systems, generalizing matrix number systems. Let Γ be a group of isometries of ${\mathbb{R}^d,g}$ an expanding affine mapping of ${\mathbb{R}^d}$ with ${g\circ\Gamma\circ g^{-1}\subset\Gamma}$ and ${\mathcal{D}\subset\Gamma}$ . We say that ${(\Gamma,g,\mathcal{D})}$ is a Γ-number system if every isometry ${\gamma\in \Gamma}$ has a unique expansion $$\gamma=g^n\delta_n g^{-n}\,g^{n-1}\delta_{n-1} g^{-(n-1)}\dots g\delta_{1} g^{-1}\,\delta_0,$$ for some ${n\in \mathbb{N}}$ and ${\delta_0,\ldots,\delta_n\in \mathcal{D}}$ . A tile can be attached to a Γ-number system. We show fundamental topological properties of this tile: they admit the fixed point of g as interior point and tesselate the space by the whole group Γ. Moreover, we give several examples, among them a class of p2-number systems, where p2 is the crystallographic group generated by the π-rotation and two independent translations.  相似文献   

16.
It is assumed that a Kripke–Joyal semantics ${\mathcal{A} = \left\langle \mathbb{C},{\rm Cov}, {\it F},\Vdash \right\rangle}$ A = C , Cov , F , ? has been defined for a first-order language ${\mathcal{L}}$ L . To transform ${\mathbb{C}}$ C into a Heyting algebra ${\overline{\mathbb{C}}}$ C ¯ on which the forcing relation is preserved, a standard construction is used to obtain a complete Heyting algebra made up of cribles of ${\mathbb{C}}$ C . A pretopology ${\overline{{\rm Cov}}}$ Cov ¯ is defined on ${\overline{\mathbb{C}}}$ C ¯ using the pretopology on ${\mathbb{C}}$ C . A sheaf ${\overline{{\it F}}}$ F ¯ is made up of sections of F that obey functoriality. A forcing relation ${\overline{\Vdash}}$ ? ¯ is defined and it is shown that ${\overline{\mathcal{A}} = \left\langle \overline{\mathbb{C}},\overline{\rm{Cov}},\overline{{\it F}}, \overline{\Vdash} \right\rangle }$ A ¯ = C ¯ , Cov ¯ , F ¯ , ? ¯ is a Kripke–Joyal semantics that faithfully preserves the notion of forcing of ${\mathcal{A}}$ A . That is to say, an object a of ${\mathbb{C}Ob}$ C O b forces a sentence with respect to ${\mathcal{A}}$ A if and only if the maximal a-crible forces it with respect to ${\overline{\mathcal{A}}}$ A ¯ . This reduces a Kripke–Joyal semantics defined over an arbitrary site to a Kripke–Joyal semantics defined over a site which is based on a complete Heyting algebra.  相似文献   

17.
We study the duality of r-compact operator. We establish if an operator ${T:E\rightarrow F}$ is r-compact, then its adjoint ${T^{\prime}: F^{\prime }\rightarrow E^{\prime }}$ is also r-compact. We also provide some sufficient condition on the pair of Banach lattices E and F which guarantees that a regular operator ${T:E\rightarrow F}$ such that ${T^{\prime }:F^{\prime }\rightarrow E^{\prime }}$ is r-compact, must itself be r-compact.  相似文献   

18.
Let ${\mathfrak{g}=W_1}$ be the p-dimensional Witt algebra over an algebraically closed field ${k=\overline{\mathbb{F}}_q}$ , where p > 3 is a prime and q is a power of p. Let G be the automorphism group of ${\mathfrak{g}}$ . The Frobenius morphism F G (resp. ${F_\mathfrak{g}}$ ) can be defined naturally on G (resp. ${\mathfrak{g}}$ ). In this paper, we determine the ${F_\mathfrak{g}}$ -stable G-orbits in ${\mathfrak{g}}$ . Furthermore, the number of ${\mathbb{F}_q}$ -rational points in each ${F_\mathfrak{g}}$ -stable orbit is precisely given. Consequently, we obtain the number of ${\mathbb{F}_q}$ -rational points in the nilpotent variety.  相似文献   

19.
Let $G$ be a unipotent algebraic group over an algebraically closed field $\mathtt{k }$ of characteristic $p>0$ and let $l\ne p$ be another prime. Let $e$ be a minimal idempotent in $\mathcal{D }_G(G)$ , the $\overline{\mathbb{Q }}_l$ -linear triangulated braided monoidal category of $G$ -equivariant (for the conjugation action) $\overline{\mathbb{Q }}_l$ -complexes on $G$ under convolution (with compact support) of complexes. Then, by a construction due to Boyarchenko and Drinfeld, we can associate to $G$ and $e$ a modular category $\mathcal{M }_{G,e}$ . In this paper, we prove that the modular categories that arise in this way from unipotent groups are precisely those in the class $\mathfrak{C }_p^{\pm }$ .  相似文献   

20.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号