首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

2.
We establish a global Calderón–Zygmund theory for solutions to a large class of nonlinear parabolic systems whose model is the inhomogeneous parabolic \(p\) -Laplacian system $$\begin{aligned} \left\{ \begin{array}{ll} \partial _t u - {{\mathrm{div}}}(|Du|^{p-2}Du) = {{\mathrm{div}}}(|F|^{p-2}F) &{}\quad \hbox {in }\quad \Omega _T:=\Omega \times (0,T)\\ u=g &{}\quad \hbox {on }\quad \partial \Omega \times (0,T)\cup {\overline{\Omega }}\times \{0\} \end{array} \right. \end{aligned}$$ with given functions \(F\) and \(g\) . Our main result states that the spatial gradient of the solution is as integrable as the data \(F\) and \(g\) up to the lateral boundary of \(\Omega _T\) , i.e. $$\begin{aligned} F,Dg\in L^q(\Omega _T),\ \partial _t g\in L^{\frac{q(n+2)}{p(n+2)-n}}(\Omega _T) \quad \Rightarrow \quad Du\in L^q(\Omega \times (\delta ,T)) \end{aligned}$$ for any \(q>p\) and \(\delta \in (0,T)\) , together with quantitative estimates. This result is proved in a much more general setting, i.e. for asymptotically regular parabolic systems.  相似文献   

3.
In this work we study the existence of nontrivial solution for the following class of multivalued quasilinear problems $$\begin{aligned} \displaystyle -\text{ div } ( \phi (|\nabla u|) \nabla u) - b(u)u \in \lambda \partial F(x,u)\;\text{ in }\;\Omega , \quad u=0\; \text{ on }\;\partial \Omega \end{aligned}$$ where $\Omega \subset \mathbb{R }^N$ is a bounded domain, $N\ge 2$ and $\partial F(x,u)$ is a generalized gradient of $F(x,t)$ with respect to $t$ . The main tools utilized are Variational Methods for Locally Lipschitz Functional and a Concentration Compactness Theorem for Orlicz space.  相似文献   

4.
In this paper we consider properties and power expressions of the functions $f:(-1,1)\rightarrow \mathbb{R }$ and $f_L:(-1,1)\rightarrow \mathbb{R }$ , defined by $$\begin{aligned} f(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma }{\sqrt{1-t^2}}\,\mathrm{d}t \quad \text{ and}\quad f_L(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma \log (1+x t)}{\sqrt{1-t^2}}\,\mathrm{d}t, \end{aligned}$$ respectively, where $\gamma $ is a real parameter, as well as some properties of a two parametric real-valued function $D(\,\cdot \,;\alpha ,\beta ) :(-1,1) \rightarrow \mathbb{R }$ , defined by $$\begin{aligned} D(x;\alpha ,\beta )= f(x;\beta )f(x;-\alpha -1)- f(x;-\alpha )f(x;\beta -1),\quad \alpha ,\beta \in \mathbb{R }. \end{aligned}$$ The inequality of Turán type $$\begin{aligned} D(x;\alpha ,\beta )>0,\quad -1<x<1, \end{aligned}$$ for $\alpha +\beta >0$ is proved, as well as an opposite inequality if $\alpha +\beta <0$ . Finally, for the partial derivatives of $D(x;\alpha ,\beta )$ with respect to $\alpha $ or $\beta $ , respectively $A(x;\alpha ,\beta )$ and $B(x;\alpha ,\beta )$ , for which $A(x;\alpha ,\beta )=B(x;-\beta ,-\alpha )$ , some results are obtained. We mention also that some results of this paper have been successfully applied in various problems in the theory of polynomial approximation and some “truncated” quadrature formulas of Gaussian type with an exponential weight on the real semiaxis, especially in a computation of Mhaskar–Rahmanov–Saff numbers.  相似文献   

5.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

6.
With each sequence \(\alpha =(\alpha _n)_{n\in \mathbb{N }}\) of pairwise distinct and non-zero points which are such that the canonical product $$\begin{aligned} P_\alpha (z) := \lim _{r\rightarrow \infty }\prod _{|\alpha _n|\le r}\left( 1-\frac{z}{\alpha _n}\right) \end{aligned}$$ converges, the sequence $$\begin{aligned} \alpha ^{\prime } := \bigl (P_\alpha ^{\prime }(\alpha _n)\bigr )_{n\in \mathbb{N }} \end{aligned}$$ is associated. We give conditions on the difference \(\beta -\alpha \) of two sequences which ensure that \(\beta ^{\prime }\) and \(\alpha ^{\prime }\) are comparable in the sense that $$\begin{aligned} \exists \,c,C>0:\quad c|\alpha ^{\prime }_n| \le |\beta ^{\prime }_n| \le C|\alpha ^{\prime }_n|, \quad n\in \mathbb{N }. \end{aligned}$$ The values \(\alpha ^{\prime }_n\) play an important role in various contexts. As a selection of applications we present: an inverse spectral problem, a class of entire functions and a continuation problem.  相似文献   

7.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

8.
This paper is concerned with the existence, multiplicity and concentration behavior of positive solutions for the critical Kirchhoff-type problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\left(\varepsilon ^2a+\varepsilon b\int _{\mathbb{R }^{3}}|\nabla u|^2\right)\Delta u+V(x)u=u^{2^*-1}+\lambda f(u)&\text{ in}~{\mathbb{R }^{3}},\\ u\in H^1({\mathbb{R }^{3}}), ~u(x)>0&\text{ in}~{\mathbb{R }^{3}}, \end{array}\right. \end{aligned}$$ where $\varepsilon $ and $\lambda $ are positive parameters, and $a,b>0$ are constants, $2^*(=6)$ is the critical Sobolev exponent in dimension three, $V$ is a positive continuous potential satisfying some conditions, and $f$ is a subcritical nonlinear term. We use the variational methods to relate the number of solutions with the topology of the set where $V$ attains its minimum, for all sufficiently large $\lambda $ and small $\varepsilon $ .  相似文献   

9.
Let \(A = -\mathrm{div} \,a(\cdot ) \nabla \) be a second order divergence form elliptic operator on \({\mathbb R}^n\) with bounded measurable real-valued coefficients and let \(W\) be a cylindrical Brownian motion in a Hilbert space \(H\) . Our main result implies that the stochastic convolution process $$\begin{aligned} u(t) = \int _0^t e^{-(t-s)A}g(s)\,dW(s), \quad t\geqslant 0, \end{aligned}$$ satisfies, for all \(1\leqslant p<\infty \) , a conical maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)}^p \leqslant C_p^p {\mathbb E}\Vert g \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)}^p. \end{aligned}$$ Here, \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)\) and \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)\) are the parabolic tent spaces of real-valued and \(H\) -valued functions, respectively. This contrasts with Krylov’s maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;{\mathbb R}^n))}^p \leqslant C^p {\mathbb E}\Vert g \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;H))}^p \end{aligned}$$ which is known to hold only for \(2\leqslant p<\infty \) , even when \(A = -\Delta \) and \(H = {\mathbb R}\) . The proof is based on an \(L^2\) -estimate and extrapolation arguments which use the fact that \(A\) satisfies suitable off-diagonal bounds. Our results are applied to obtain conical stochastic maximal \(L^p\) -regularity for a class of nonlinear SPDEs with rough initial data.  相似文献   

10.
We introduce an irrational factor of order k defined by \({I_{k}(n) ={\prod_{i=1}^{l}} p_{i}^{\beta_{i}}}\) , where \({n = \prod_{i=1}^{l} p_{i}^{\alpha_{i}}}\) is the factorization of n and \({\beta_{i} = \left\{\begin{array}{ll}\alpha_i, \quad \quad {\rm if} \quad \alpha_i < k \\ \frac{1}{\alpha_i},\quad \quad {\rm if} \quad \alpha_i \geqq k \end{array}\right.}\) . It turns out that the function \({\frac{I_{k} (n)}{n}}\) well approximates the characteristic function of k-free integers. We also derive asymptotic formulas for \({\prod_{v=1}^{n} I_{k}(v)^{\frac{1}{n}}, \sum_{n \leqq x} I_{k}(n)}\) and \({\sum_{n \leqq x} (1 - \frac{n}{x}) I_{k}(n)}\) .  相似文献   

11.
Let $(Q(k):k\ge 0)$ be an $M/M/1$ queue with traffic intensity $\rho \in (0,1).$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$ for any $p>0.$ The ergodic theorem yields that $S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$ , where $Q(\infty )$ is geometrically distributed with mean $\rho /(1-\rho ).$ It is known that one can explicitly characterize $I(\varepsilon )>0$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$ In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$ where $C(p)>0$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.  相似文献   

12.
In this article, we study the Fu?ik spectrum of the fractional Laplace operator which is defined as the set of all \({(\alpha, \beta)\in \mathbb{R}^2}\) such that $$\quad \left.\begin{array}{ll}\quad (-\Delta)^s u = \alpha u^{+} - \beta u^{-} \quad {\rm in}\;\Omega \\ \quad \quad \quad u = 0 \quad \quad \quad \qquad {\rm in}\; \mathbb{R}^n{\setminus}\Omega.\end{array}\right\}$$ has a non-trivial solution u, where \({\Omega}\) is a bounded domain in \({\mathbb{R}^n}\) with Lipschitz boundary, n > 2s, \({s \in (0, 1)}\) . The existence of a first nontrivial curve \({\mathcal{C}}\) of this spectrum, some properties of this curve \({\mathcal{C}}\) , e.g. Lipschitz continuous, strictly decreasing and asymptotic behavior are studied in this article. A variational characterization of second eigenvalue of the fractional eigenvalue problem is also obtained. At the end, we study a nonresonance problem with respect to the Fu?ik spectrum.  相似文献   

13.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

14.
In this article, we study parabolic stochastic partial differential equations (see Eq. (1.1)) defined on arbitrary bounded domain $\mathcal{O }\subset \mathbb{R }^d$ admitting the Hardy inequality 0.1 $$\begin{aligned} \int _{\mathcal{O }}|\rho ^{-1}g|^2\,\text{ d}x\le C\int _{\mathcal{O }}|g_x|^2 \text{ d}x, \quad \forall g\in C^{\infty }_0(\mathcal{O }), \end{aligned}$$ where $\rho (x)=\text{ dist}(x,\partial \mathcal{O }).$ Existence and uniqueness results are given in weighted Sobolev spaces $\mathfrak{H }_{p,\theta }^{\gamma }(\mathcal{O },T),$ where $p\in [2,\infty ), \gamma \in \mathbb{R }$ is the number of derivatives of solutions and $\theta $ controls the boundary behavior of solutions (see Definition 2.5). Furthermore, several Hölder estimates of the solutions are also obtained. It is allowed that the coefficients of the equations blow up near the boundary.  相似文献   

15.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

16.
Let Ω denote the upper half-plane ${\mathbb{R}_+^2}$ or the upper half-disk ${D_{\varepsilon}^+\subset \mathbb{R}_+^2}$ of center 0 and radius ${\varepsilon}$ . In this paper we classify the solutions ${v\in\;C^2(\overline{\Omega}\setminus\{0\})}$ to the Neumann problem $$\left\{\begin{array}{lll}{\Delta v+2 Ke^v=0\quad {\rm in}\,\Omega\subseteq \mathbb{R}^2_+=\{(s, t)\in \mathbb{R}^2: t >0 \},}\\ {\frac{\partial v}{\partial t}=c_1e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s >0 \},}\\ {\frac{\partial v}{\partial t}=c_2e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s <0 \},}\end{array}\right.$$ where ${K, c_1, c_2 \in \mathbb{R}}$ , with the finite energy condition ${\int_{\Omega} e^v < \infty}$ As a result, we classify the conformal Riemannian metrics of constant curvature and finite area on a half-plane that have a finite number of boundary singularities, not assumed a priori to be conical, and constant geodesic curvature along each boundary arc.  相似文献   

17.
We study the asymptotic expansion for the Landau constants \(G_n\) , $$\begin{aligned} \pi G_n\sim \ln N + \gamma +4\ln 2 + \sum _{s=1}^\infty \frac{\beta _{2s}}{ N^{2s}},\quad n\rightarrow \infty , \end{aligned}$$ where \(N=n+3/4, \gamma =0.5772\ldots \) is Euler’s constant, and \((-1)^{s+1}\beta _{2s}\) are positive rational numbers, given explicitly in an iterative manner. We show that the error due to truncation is bounded in absolute value by, and of the same sign as, the first neglected term for all nonnegative \(n\) . Consequently, we obtain optimal sharp bounds up to arbitrary orders of the form $$\begin{aligned} \ln N+\gamma +4\ln 2+\sum _{s=1}^{2m}\frac{\beta _{2s}}{N^{2s}}< \pi G_n < \ln N+\gamma +4\ln 2+\sum _{s=1}^{2k-1}\frac{\beta _{2s}}{N^{2s}} \end{aligned}$$ for all \(n=0,1,2,\ldots , m=1,2,\ldots \) , and \(k=1,2,\ldots \) . The results are proved by approximating the coefficients \(\beta _{2s}\) with the Gauss hypergeometric functions involved and by using the second-order difference equation satisfied by \(G_n\) , as well as an integral representation of the constants \(\rho _k=(-1)^{k+1}\beta _{2k}/(2k-1)!\) .  相似文献   

18.
We consider real univariate polynomials $P_n$ of degree $ \le n $ from class $$\begin{aligned} \mathbf {C}_n = \{P_n:|P_n \left( \cos \displaystyle \frac{(n -i)\pi }{n}\right) |\le 1 \; \text{ for }\; 0\le i\le n \} \end{aligned}$$ which encompasses the unit ball of polynomials with respect to the uniform norm on $[- 1, 1]$ . For pairs of consecutive coefficients of $ P_n(x) = \sum \nolimits _{k=0}^{n}a_kx^k$ there holds the inequality 1 $$\begin{aligned} |a_{k-1}|+|a_k|\le |t_{n,k}|, \quad \text{ if }\; k\equiv n\; \text{ mod }\; 2, \end{aligned}$$ where $T_n(x)=\sum \nolimits _{k=0}^{n} t_{n,k}x^k$ is the $n$ -th Chebyshev polynomial of the first kind. (1) implies Markov’s classical coefficient inequality of 1892 (Math. Ann. 77:213–258, 1916, p. 248) and goes back to Szegö, but was made public by P. Erdös (Bull. Am. Math. Soc. 53:1169–1176, 1947, p. 1176) in 1947. We ask here: will the (nonzero) coefficients of $T_n$ likewise majorize complementary pairs $|a_k| + |a_{k+1}|$ ? More generally: does there hold 2 $$\begin{aligned} |a_k| + |a_j| \le |t_{n,k}| \quad \text{ for } \text{ all }\; P_n \in \mathbf {C_n}, \end{aligned}$$ $\text{ where }\; k < j \;\text{ and }\; k\equiv n\mod 2\;\text{ but }\; j\not \equiv n\mod 2 ?$ We treat the marginal cases $n < 12$ separately, and for $n \ge 12$ we provide answers to this question with the aid of the explicitly determined optimal bound $K \sim \lceil \frac{n}{\sqrt{2}}\rceil $ which incorporates the height and the length of $ \frac{T'_n(x)}{n}$ . Theorem 2.1: (2) holds, provided $K \le k < j$ ; in particular, provided $\frac{n}{\sqrt{2}}<k<j$ . As a corollary we reveal new extremal properties of the leading coefficients of $\pm T_n$ . Theorem 2.4: (2) does not hold if $k < j < K$ . Theorem 2.5: If $k < K < j$ , then (2) holds for certain, but not for all, $k$ and $j$ . If we keep fixed $j = n-1> K$ , then (2) holds for all $k$ with $k_{*}\le k < j$ , where the bound $k_{*} < K$ is explicitly determined, and is optimal for $n\le 43$ . In Theorem 2.6 we return to G. Szegö’s original inequality (1) and constructively prove the non - uniqueness of its extremizer $\pm T_n$ .  相似文献   

19.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

20.
In this paper we prove the existence of a nontrivial non-negative radial solution for the quasilinear elliptic problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} -\nabla \cdot \left[\phi ^{\prime }(|\nabla u|^2)\nabla u \right] +|u|^{\alpha -2}u =|u|^{s-2} u,&x\in \mathbb{R }^{N},\\ u(x) \rightarrow 0, \quad \text{ as} |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where $N\ge 2, \phi (t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t, 1< p<q<N, 1<\alpha \le p^* q^{\prime }/p^{\prime }$ and $\max \{q,\alpha \}< s<p^*,$ being $p^*=\frac{pN}{N-p}$ and $p^{\prime }$ and $q^{\prime }$ the conjugate exponents, respectively, of $p$ and $q$ . Our aim is to approach the problem variationally by using the tools of critical points theory in an Orlicz-Sobolev space. A multiplicity result is also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号