首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

2.
Supported samples of 8 wt % monometallic Pt/C and Ru/C, as well as 12 wt % bimetallic Pt50Ru50/C, were prepared by the method of incipient wetness impregnation. Impregnated samples were subsequently reduced by hydrogen and then oxidized in air at different To temperatures. TEM and XRD examinations indicated that metal crystallites were finely dispersed with a diameter of dM < or = 3 nm on the reduced samples. Reductive behavior of the oxidized samples by hydrogen was pursued with the technique of temperature programmed reduction (TPR). The temperature of the reduction peaks (Tr) noticed in the TPR profiles varied with the metal composition of catalysts and To temperature of oxidation. At To = 300 K, oxidation was confined to the surface layer of metallic crystallites. As a result, Pts O (with a peak at Tr = 230 K) or PtsO2 (Tr = 250 K) was formed on monometallic Pt/C while RusO2 (Tr approximately 380 K) was formed on Ru/C. A reductive peak with Tr = 250 K was found from the bimetallic sample from Pt50Ru50/C oxidized at To = 300 K. The reductive peak suggests bimetallic crystallites were dispersed with cherry type structure, with Pt exposed at the surface and Ru in the core. On increasing the To temperature of oxidation treatment to 370 K and higher, Tr peaks between 270 and 350 K were gradually noticed on the oxidized bimetallic sample. Peaks in this Tr region are assigned to reduction of the oxidized alloy surface (AsO). Evidently, a segregation of Ru to the surface of the bimetallic crystallites is indicated upon oxidation at To > 380 K.  相似文献   

3.
The phase boundary between beta-Si(3)N(4) and gamma-Si(3)N(4) is investigated at high pressure and high temperature using first-principles lattice dynamics calculations within the quasi-harmonic approximation. We find a positive slope of the phase boundary, hence, at higher temperatures it requires higher pressures to synthesize the high-pressure polymorph of silicon nitride. It turns out that the thermal expansion of the spinel-type gamma-phase is larger than that of the phenacite-type beta-phase. On the other side, pressure affects more the volume of beta-Si(3)N(4) than of gamma-Si(3)N(4), reflected in the higher bulk modulus of gamma-Si(3)N(4) up to about 40 GPa. The origin of the different temperature behavior of these phases, consequently, is rooted in a larger volume dependence of the zero point energy in gamma-Si(3)N(4) in comparison to beta-Si(3)N(4).  相似文献   

4.
杨儒  胡天斗 《分子催化》1998,12(4):241-245
采用XPS和EXAFS方法,研究了以sol-gel法制得的超累粉体SiO2为载体,用化学还原沉积法制备的负载型非晶态Cu/SiO2催化剂在甲酸甲酯氢解反应前后的表面结构和局域结构。结果表明,非晶态样品中的铜原子以零价铜的形式存在,但配位数却大幅度地低于铜樯档,意味着铜原子在高比表面超细SiO2载体上处于高分散的非晶状态,表面悬空键显著增多,表面能增大,导致配位键收缩。  相似文献   

5.
Nickel is used as catalyst in alkaline electrochemical systems like batteries, electrolyzers and fuel cells. Adsorption experiments from potassium on a thin NiO(100) epitactic layer on an Ag(100)-single crystal substrate showed that potassium intrudes in that NiO-layer where at a temperature of 350 K a mixed oxide phase was built. At 120 K metallic potassium was adsorbed on the NiO surface. A symmetric K2p-peak showed that potassium is in the oxidized state compared to the asymmetric peak of metallic potassium. No potassium diffused into metallic nickel at a temperature of 450 K. The electrochemically oxidized surface layer consisted of nickel, oxygen and also potassium. After heating and ion-etching no more potassium was detectable by x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). But it was visible again after oxidizing and heating of the sample to 670 K. Therefore, the potassium must have been in the bulk. It diffused to the surface if there was oxygen at sufficiently high temperatures. Further heating reduces the surface and the potassium also disappeared. Received: 6 September 1998 / Revised: 1 April 1999 / Accepted: 16 April 1999  相似文献   

6.
锆基合金由于具有低的热中子吸收截面、良好的耐腐蚀性能和力学性能等优点,通常被用于水冷核反应堆中的核燃料包壳和其他结构材料。通过在合金中添加适量的Nb元素可以有效地降低锆合金的氧化速率和吸氢分数,从而改善锆合金的耐腐蚀性能。尽管对锆合金的耐腐蚀性能得到了广泛的认识,但关于其在接近真实氧化腐蚀条件下的原位研究一直是具有挑战性的课题。本工作中利用近常压X射线光电子能谱(NAP-XPS)原位研究了1.3 × 10-8 - 1.3 × 10-1 mbar (1 mbar = 100 Pa)连续分压下室温到623 K温度时两种锆基合金表面在水,氧中的初始氧化腐蚀行为。结果表明,未添加Nb和添加1%Nb的锆合金表面在初始氧化过程中锆元素都会由金属态向多种氧化态过渡。水蒸气环境下两种合金的氧化速率都要低于氧气环境。室温下无论水蒸气还是氧气环境两种合金的氧化速率都要比623 K高温情况下的慢。在623 K的氧气气氛下,未添加Nb的锆合金相较于添加1%Nb的锆合金更容易被氧化,Nb的添加一定程度上会降低氧物种的吸附能力。在室温下和623 K低水蒸气压力下,1%Nb锆合金氧化速率更快,Nb促进OH-在表面生成。而在623 K高水蒸气压力下,未添加Nb的锆合金有更易于被氧化的倾向,Nb在高温下向表面扩散并抑制OH-键的断裂,但两种样品表面短时间内都无法被完全氧化。  相似文献   

7.
Single-wall carbon nanohorn (SWNH), which is a tubular particle with a cone cap, was oxidized in an oxygen flow at various temperatures. N(2) adsorption at 77 K, thermogravimetry (TG), differential thermal analysis (DTA), transmission electron microscopy, and Raman spectroscopy measurements were carried out on the oxidized SWNHs. The specific surface area of the oxidized SWNHs can be controlled by oxidation temperature, giving the maximum value of 1420 m(2)/g. The pore size distribution by the BJH method and the comparison plot of the N(2) adsorption isotherms of SWNH oxidized at different temperatures against that of as-grown SWNH revealed the minimum oxidation temperature for opening internal nanopores. TG-DTA analyses determined the components of as-grown SWNH: amorphous carbon 2.5 wt %, defective carbon at the cone part 15 wt %, tubular carbon 70 wt %, and graphitic carbon 12 wt %. These systematic analyses provided the exact internal nanopore volume of 0.49 mL/g for pure SWNH particles.  相似文献   

8.
Bronisz R 《Inorganic chemistry》2007,46(16):6733-6739
The coordination polymer {[Fe(pbtz)3](ClO4)2 . 2EtOH}infinity (1) has been prepared in a reaction between Fe(ClO4)2 . 6H2O and 1,3-di(tetrazol-2-yl)propane (pbtz). The formation of the second product {[Fe(pbtz)3](ClO4)2}infinity (2) was also noticed. Both complexes crystallize in the R3 space group. The single-crystal X-ray diffraction study of 1 (295, 90 and 230 K) revealed that the 2-substituted tetrazole rings (2tz) coordinate monodentately to the metal ions, forming Fe(2tz)6 cores. There are two crystallographically independent iron(II) ions in 1. At 295 K the Fe-N4 bond lengths are equal to 2.173(5) and 2.196(5) A for Fe1 and 2.176(5) and 2.190(4) A for Fe2. The pbtz ligand molecules act as N4,N4' connectors, bridging central atoms in the three directions, which leads to the formation of the 3D network. The crystal lattice of 1 is solvated by ethanol molecules. At 295 K the solvent and ligand molecules are disordered. The results of temperature-dependent magnetic susceptibility measurements (5-300 K), and the single-crystal X-ray diffraction studies (90 K) have exhibited that 1 undergoes the thermally induced spin transition HS<-->LS (SCO). The chiMT(T) dependence shows in the range 200-75 K gradual SCO. Below 75 K the transition is finished and approximately 20% of the HS fraction is present in the sample. The HS-->LS transition is accompanied by a shortening of the Fe-N bonds of 0.15 A. At 90 K the ligand molecules are ordered. The presence of 2 in the reaction product was disclosed accidentally, and only the X-ray diffraction studies (250, 90 K) were performed. Also in 2 iron(II) ions serve as topological nodes of the 3D network. Despite the same network topology, 2 crystallizes without ethanol molecules solvating the crystal lattice. The pbtz molecules bridge the neighboring iron(II) ions, coordinating through N4,N4' atoms of the 2-substituted tetrazole rings forming the Fe(2tz)6 cores. At 250 K the Fe-N bond lengths are equal to 2.208(5) and 2.218(5) A. In contrast to 1, the cooling of the crystal of 2 from 250 to 90 K does not involve the shortening of the Fe-N bond lengths. At this temperature, the Fe-N distances remain characteristic for the HS form of the complex and are equal to 2.203(3) and 2.208(3) A.  相似文献   

9.
The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers.  相似文献   

10.
纳米Ni-Co-B非晶态合金抗氧化行为的原位XPS研究   总被引:3,自引:0,他引:3  
采用原位XPS手段研究了纳米非晶态Ni-Co-B合金中B和Co的抗氧化行为、表面组成与氧化处理条件之间的关系以及各元素含量随深度的变化趋势.结果发现,氧优先氧化表面的元素B物种,在元素态B被完全耗尽后才开始氧化表面的元素态Co物种,在元素态B和Co均被完全氧化后,元素态Ni才开始被氧化.另外,研究还发现,在氧化过程中,B和Co的氧化物具有在表面富集的倾向.正是由于B和Co的优先被氧化才保护了催化加氢反应中的活性中心--元素态Ni.  相似文献   

11.
The new anionic carbon sulfides C6S10(2-) and C12S16(2-) are described and crystallographically characterized. The C12S16(2-) anion consists of two C6S8 units connected by an exceptionally long (2.157(12) A) S-S bond. In solution, C12S16(2-) exists in equilibrium with the radical C6S8(-*). The equilibrium constant for radical formation (293 K, THF) is 1.2 x 10(-4) M, as determined by optical spectroscopy at varying concentrations. Radical formation occurs through scission of the S-S bond. On the basis of variable temperature EPR spectra, the thermodynamic parameters of this process are DeltaH = +51.5 +/- 0.5 kJ x mol(-1) and DeltaS = +110 +/- 3 J x mol(-1) x K(-1). C6S10(2-) is an oxidation product of C3S5(2-) and consists of two C3S5 units connected by an S-S bond. The S-S bond length (2.135(4) A) is long, and the CS-SC torsion angle is unusually acute (52.1 degrees ), which is attributed to an attractive interaction between C3S2 rings. The oxidation of (Me4N)2C3S5 occurs at -0.90 V vs Fc+/Fc in MeCN, being further oxidized at -0.22 V. The similarity of the cyclic voltammogram of (Me4N)2C6S10 to that of (Me4N)2C3S5 indicates that C6S10(2-) is the initial oxidation product of C3S5(2-).  相似文献   

12.
The changes in microporous structure and surface properties of pitch-based activated carbon fibers upon air oxidation were examined by high-resolution N2 adsorption and various physicochemical methods such as DTA, DRIFT, XPS, and chemical titration/analysis. It was found that air oxidation below 673 K slightly modifies the microporous structure together with a minor replacement of surface -C=O groups by -C-O groups. However, oxidation above 773 K gradually increases the specific surface area and the average width of micropores by producing micropores with larger widths and greatly induces the formation of surface functional groups, especially the -COOH group. A slight change in microporosities has an evident effect on CH4 storage property.  相似文献   

13.
Temperature dependent structural and morphological investigations on semiconducting dioctyl-terthiophene (DOTT) thin films prepared on silica surfaces reveals the coexistence of surface induce order and distinct crystalline/liquid crystalline bulk polymorphs. X-ray diffraction and scanning force microscopy measurements indicate that at room temperature two polymorphs are present: the surface induced phase grows directly on the silica interface and the bulk phase on top. At elevated temperatures the long-range order gradually decreases, and the crystal G (340 K), smectic F (348 K), and smectic C (360 K) phases are observed. Indexation of diffraction peaks reveals that an up-right standing conformation of DOTT molecules is present within all phases. A temperature stable interfacial layer close to the silica-DOTT interface acts as template for the formation of the different phases. Rapid cooling of the DOTT sample from the smectic C phase to room temperature results in freezing into a metastable crystalline state with an intermediated unit cell between the room temperature crystalline phase and the smectic C phase. The understanding of such interfacial induced phases in thin semiconducting liquid crystal films allows tuning of crystallographic and therefore physical properties within organic thin films.  相似文献   

14.
Catalytic oxidation of hydrogen was carried out at 430–600 K by using surface activated amorphous Ni−Cu−P alloys. The oxidation of the alloys at 750 K results in an increase of the activity, while only the treatment with acid leads to a decrease of the activity. The best results are obtained from the oxidized Ni68Cu10P22 amorphous alloy.  相似文献   

15.
Anatase, rutile, and amorphous titania powders were surface-modified by grinding with PtCl4 and H2[PtCl6]. Only the anatase modification afforded hybrid photocatalysts capable of degradation of 4-chlorophenol (4-CP) with visible light, with sufficient stability towards decomplexation. Grinding with K2[PtCl4] produced materials of only low photocatalytic activity. Most efficient photocatalysts contained up to 2 wt% of PtIV. At higher surface loading the excess fraction of the complex is desorbed into the aqueous solution. Scavenging experiments with benzoic acid and tetranitromethane revealed that hydroxyl radicals are produced by the primary reduction of oxygen by conduction band electrons generated through electron injection from a postulated surface platinum(III) complex. It is proposed that the latter is formed from a charge-transfer ligand-to-metal (CTLM) excited state through homolysis of the Pt-Cl bond. Accordingly. the primary oxidation of 4-CP may occur by adsorbed chlorine atoms, the intermediary existence of which was demonstrated by scavenging experiments with phenol.  相似文献   

16.
A model catalyst system, palladium on tungsten oxide, has been examined by temperature-programmed desorption and photoemission spectroscopy. The samples were prepared by evaporation of palladium onto an oxidized tungsten foil under ultrahigh vacuum conditions. Mostly three-dimensional (3-D) palladium (Pd) clusters were found to be present on oxidized tungsten (WOx) surfaces at room temperature. Upon annealing to 670 K, the palladium clusters are redispersed and decorated by the WOx surface layer. The nature of the WOx phase on top of the palladium clusters is dependent on the mode of oxidation of the tungsten foil prior to palladium deposition. Mainly W(2+) species decorate palladium deposits on tungsten oxidized at room temperature, while mainly W(4+) species are on top of palladium deposits on the surface oxidized at 1300 K. The appearance of a Pd(n+)-O-W(4+) mixed oxide phase with n < 2 was observed on the oxidized tungsten surface. The substantial reduction (relative to nonannealed samples) of molecular CO coverage induced by annealing is discussed in terms of the changes in chemical composition and morphology of the outermost surface.  相似文献   

17.
研究了纳米铁填充的碳纳米管基复合纤维在空气中的热氧化性能。结果表明:一般在室温即被氧化的铁(Fe)纳米粒子在170 ℃仍然具有良好的稳定性。这一方面是由于碳纳米管的保护作用所致,另一方面碳纳米管末端的Fe纳米粒子在室温下即迅速被氧化成反尖晶石型Fe3O4/γ-Fe2O3,170 ℃以下能有效阻止氧分子向碳纳米管内扩散。因此,170 ℃可以被看作氧分子扩散进入碳纳米管腔的极限温度。在170 ℃以下时,氧分子无法渗透Fe3O4 /γ-Fe2O3晶格在管腔中形成氧分子。当温度高于170 ℃时,氧分子渗透发生,管腔内的Fe纳米粒子由靠近管末端位置到内部逐渐被氧化。由于相对良好的热氧化稳定性,Fe填充碳纳米管基复合纤维的铁磁性将可以在更高温度范围内得以保持。  相似文献   

18.
Periodate oxidation breaks the C2–C3 bond in the glucose repeat units of cellulose, forming two vicinal aldehyde groups. When the cellulose is partially oxidized, three products were generated after periodate oxidation: fibrous cellulose, sterically stabilized nanocrystalline cellulose (SNCC) and dialdehyde modified cellulose. Thus, by periodate oxidation alone, we can produce nanocellulose. SNCCs were produced after 26, 42 and 84 h periodate oxidation. Their morphologies were examined by transmission electron microscopy, which show that the three SNCCs have similar diameters (5–10 nm). In contrast, the average length of SNCC decreases with aldehyde content: from approximately 590 nm after 26 h of oxidation to 100 nm for an oxidation period of 84 h. It indicates that the morphology of SNCC can be well controlled by the degree of periodate oxidation, which depends on the amount of periodate and the reaction time. Equivalent spherical diameters of SNCCs were also examined by dynamic light scattering, and the results correspond closely to the ones observed by TEM. The viscosities of SNCCs were measured by an Ubbelohde viscometer and compared with theory. Because the length of SNCC particles gradually reduces while their diameters remain almost the same, we propose that periodate reacts preferentially with the amorphous region of cellulose. After most of the amorphous regions have reacted, the reaction proceeds at the boundary of amorphous and crystalline regions, creating a reaction front that advances towards the crystalline regions, thus continually shortening them. Dynamic light scattering experiments on SNCC suspensions when adding cosolvents into them proved that SNCCs were sterically stabilized in water.  相似文献   

19.
Ultrathin rhodium films with a thickness ranging from 1 to a few monolayers were deposited on a single-crystal Ru(0001) surface in order to investigate the oxidation behavior of ultrathin epitaxial films on a dissimilar substrate. It is found that rhodium grows on Ru(0001) initially layer by layer, adapting the in-plane lattice parameters of Ru(0001). When exposing Rh films to oxygen environment (approximately 4.8 x 10(6) L O2 exposure) at 660 K, 2-4 ML Rh films form a surface oxide composed of (9 x 9) O-Rh-O trilayers. Quite in contrast, oxidation of the 1 ML RhRu(0001) film leads to a poorly ordered oxide with a rutile structure reminiscent of RuO2(110) on Ru(0001). The oxidized 1 ML RhRu(0001) film contains much more oxygen than the oxidized thicker Rh films. Lower temperatures (535 K) and high doses of oxygen lead to a (1 x 1)-O overlayer on the 1 ML RhRu(0001) surface, whose atomic geometry resembles closely that of the (1 x 1)-O phase on clean Ru(0001).  相似文献   

20.
The nitridation of Si(100) by ammonia and the subsequent oxidation of the nitrided surface by both gaseous atomic and molecular oxygen was investigated under ultrahigh vacuum (UHV) conditions using X-ray photoelectron spectroscopy (XPS). Nitridation of Si(100) by the thermal decomposition of NH3 results in the formation of a subsurface nitride and a decrease in the concentration of surface dangling bond sites. On the basis of changes in the N1s spectra obtained after NH3 adsorption and decomposition, we estimate that the nitride resides about four to five layers below the vacuum-solid interface and that the concentration of surface dangling bonds after nitridation is only 59% of its value on Si(100)-(2 x 1). Oxidation of the nitrided surface is found to produce an oxide phase that remains in the outer layers of the solid and interacts only weakly with the underlying nitride for oxygen coverages up to 2.5 ML. Slight changes in the N1s spectra observed after oxidizing at 300 K are suggested to arise primarily from the introduction of strain within the nitride, and by the formation of a small amount of Si2=N-O species near the nitride-oxide interface. The nitrogen bonding environment changes negligibly after oxidizing at 800 K, which is indicative of greater phase separation at elevated surface temperature. Nitridation is also found to significantly reduce the reactivity of the Si(100) surface toward both atomic and molecular oxygen. A comparison of the oxygen uptake on the clean and nitrided surfaces shows quantitatively that the decrease in dangling bond concentration is responsible for the reduced activity of the nitrided surface toward oxidation, and therefore that dangling bonds are the initial adsorption site for both gaseous oxygen atoms and molecules. Increasing the surface temperature is found to promote the uptake of oxygen when O2 is used as the oxidant, but brings about only a small enhancement in the uptake of gaseous O-atoms. The different effects of surface temperature on the uptake of O versus O2 are interpreted in terms of the efficiency at which dangling bond pairs are regenerated on the surface at elevated temperature and the different site requirements for the adsorption of O and O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号