首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic of chlorhexidine digluconate (CHXDG) uptake from aqueous solution by hydroxyapatite (HA) was investigated by ultraviolet (UV) analysis performed in HA powder (UV-solid) after the CHX adsorption. Adsorption isotherm of chlorhexidine (CHX) uptake was modeled by a combination of Languimir and Langmuir-Freundlich mechanisms. Strong molecule-molecule interactions and positive cooperativity predominated in the surface when CHX concentration was above 8.6 μg(CHX)/mg(HA). UV-solid spectra (shape, intensity and band position) of CHX bound to HA revealed that long-range molecular structures, such as aggregates or micelles, started to be formed at low CHX concentrations (1.52 μg(CHX)/mg(HA)) and predominated at high concentrations. Grazing-incidence X-ray diffraction (GIXRD) analysis from synchrotron radiation discarded the formation of crystalline structures on HA surface or precipitation of CHX crystalline salts, as suggested in previous works. The effect of the HA/CHX association on HA in vitro bioactivity, cytotoxicity and CHX antimicrobial activity was evaluated. It was shown that CHX did not inhibit the precipitation of a poorly crystalline apatite at HA/CHX surface after soaking in simulating body fluid (SBF). Cell viability studies after exposure to extracts of HA and HA/CHX showed that both biomaterials did not present significant in vitro toxicity. Moreover, HA/CHX inhibited Enterococcus faecalis growth for up to 6 days, revealing that binding to HA did not affect antimicrobial activity of CHX and reduced bacterial adhesion. These results suggested that HA/CHX association could result in a potential adjuvant antimicrobial system for clinical use.  相似文献   

2.
In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5–14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.  相似文献   

3.
The recent study focusing on paper coated with microfibrillated cellulose (MFC) revealed the ability of such a structure to achieve a controlled release of molecules introduced into its nanoporous network. The present study examines this concept using a chlorhexidine digluconate-based (CHX) antibacterial solution. Various analyses were performed, optical microscopy, FE-SEM and AFM to underline the structure of the nanoporous MFC network. Release studies were conducted in an aqueous medium following two different protocols and antibacterial tests were done to evaluate the efficiency of the final materials obtained. MFC coating provided a slower and more progressive release of CHX. Indeed, papers impregnated with CHX were active for 18 days, whereas papers coated with CHX/MFC retained their antibacterial activity for 45 days. In parallel, similar tests were carried out using a model coating slurry, and although the rate of release of CHX was also slowed down, the quantities released were insufficient to confer any antibacterial activity. In conclusion, this study suggests that the use of MFC as a coating could be very promising since it allows a controlled and progressive release of molecules preserving long-term antibacterial activity.  相似文献   

4.
In parodontology, guided tissue regeneration (GTR) is a new technique to cure periodontal lesions. Where the association of the GTR with an antimicrobial agent does not yield optimal results, we used the properties of cyclodextrins (CDs) to improve the membrane used in RTG to control the release and to increase the quantity of antimicrobial agent stocked on the membrane. We successed in fixing 14%-wt of cyclodextrin polymer on polyvinylidene difluoride (PVDF) membranes thank to citric acid (CTR) as crosslinking agent. We studied the complexation of chlorhexidine diacetate (CHX), the antiseptic agent used in this study, with CDs in UV-spectrophotometry and ROESY NMR. We observed complexation of CHX by β, γ, hydroxypropylated (HP) βCD. We studied the biological properties of the cyclodextrin polymer onto (PVDF) membranes and observed that the CDs-polymer is not harmful for the cells. Moreover it stimulates their growth with native CD. A kinetic of release of the CHX was performed. Raw membranes released all CHX stocked in few hours, whereas grafted membranes released more than tenfold this quantity during 60–80 days.  相似文献   

5.
Three new copper(II) complex compounds with chlorhexidine diacetate as a ligand have been prepared and characterized by elemental and thermogravimetrical analyses, molar conductances, magnetic susceptibility measurements, infrared, electronic and EPR spectra. The complexes correspond to the formulas: [Cu2(CHX)Cl4]·2C2H5OH, [Cu2(CHX)Br4]·2C2H5OH and [Cu2(CHX)(CH3COO)2] (CH3COO)2·2C2H5OH, where CHX = chlorhexidine, their composition and stereochemistry depending on the reaction conditions and the metal salt used. Chlorhexidine acts as neutral tetradentate NNNN donor, coordinating through the four imine nitrogen atoms. Investigations on antimicrobial activity in vitro show that all the complexes are active against the tested microorganisms, the complex with chloride being more active against Gram negative bacteria than chlorhexidine diacetate..   相似文献   

6.
Three new copper (II) complex compounds with chlorhexidine (CHX) as ligand have been prepared and characterized by elemental and thermogravimetrical analyses, molar conductances, infrared, and UV–Vis spectra. Chlorhexidine acts as neutral tetradentate NNNN donor, coordinating through the four imine nitrogen atoms. Based on the experimental data the following formulas have been proposed for the complex compounds: [Cu(CHX)](NO3)2 (1), [Cu2(CHX)Br2Cl2]·4H2O (2), and [Cu(CHX)Cl]Cl (3). Thermal decomposition evidenced dehydration (complex 2), anionic moieties release and the ligand cleavage with chlorobenzene moieties removal for all complexes. The final residue is in all cases copper oxide. Antibacterial and antifungal activities of the complexes have been determined in vitro, by the cup-plate agar diffusion method, against Escherichia coli, Staphyloccocus aureus, and Candida albicans. The complexes present an activity comparable to that of chlorhexidine, the most active being [Cu2(CHX)Br2Cl2]·4H2O.  相似文献   

7.
Bacterial strains become resistant to almost all classes of antibiotics, which makes it necessary to look for new substitutes. The non-absorbable ciprofloxacin–biguanide bismuth complex, used locally, may be a good alternative to a conventional therapy. The purpose of this study was to study the structure of the proposed ciprofloxacin (CIP) -bismuth(III)—chlorhexidine (CHX) composite (CIP-Bi-CHX). The spectroscopic techniques such as UV-VIS (ultraviolet-visible) spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and NMR (Nuclear Magnetic Resonance) spectroscopy were used for structure characterization of the hybrid compound. The performed analysis confirmed the presence of the two active components—CIP and CHX and revealed the possible coordination sites of the ligands with bismuth ion in the metallo-organic structure. Spectroscopic study showed that the complexation between Bi(III) and CIP occurs through the carboxylate and ketone groups of the quinolone ring, while CHX combines with the central ion via the biguanide moieties.  相似文献   

8.
Various antimicrobial modalities have been proposed to treat peri‐implantitis but resulted in limited outcomes. The aim of this in vitro study was to evaluate the disinfection efficacy of combined application of chlorhexidine digluconate (CHX) and antimicrobial photodynamic therapy (aPDT) of titanium surfaces previously contaminated with Porphyromonas gingivalis biofilm. P. gingivalis biofilms were grown on 32 polished and 32 sandblasted large‐grit acid‐etched (SLA) titanium surfaces. Titanium disks were allocated into four groups as follows: (1) immersed in phosphate‐buffered saline (PBS), (2) immersed in 0.2% CHX, (3) application of aPDT and (4) immersed in 0.2% CHX and subsequent aPDT. Residual bacteria were determined by microbial culture analysis and by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) imaging. Combination protocol (CHX+ aPDT) was the most effective in eradicating P. gingivalis (< 0.05) on both polished and SLA surfaces. There was no significant difference in the number of remaining P. gingivalis between polished titanium disks and the SLA ones in four groups (> 0.05). Under the limitation of this study, combined technique of preceding application of CHX and subsequent aPDT was shown to be an efficient method in reducing P. gingivalis numbers in both polished and SLA titanium surfaces.  相似文献   

9.
Nanocomposite biocompatible hydrogels (NCHG) were synthesised as model systems for in situ cured potentially local drug delivery devices for curing periodontal infections. The composite consists of the following components: nanoparticles (NPs), matrix gel, and chlorhexidine (CHX) as antibacterial drug. The NPs were obtained by free radical initiated copolymerization of the monomers, 2-hydroxyethyl methacrylate (HEMA) and polyethyleneglycol dimethacrylate (PEGDMA), in aqueous solution. The same monomers were used to prepare crosslinked matrices by photopolymerization. NCHGs were obtained by mixing NPs, monomers, and drug in an aqueous solution then crosslinked by photopolymerization. Mechanical properties, swelling behavior, and the kinetics of drug release have been investigated. It was found that compression strength values increased with increasing ratio of the crosslinker PEGDMA. Incorporation of NPs into the matrix resulted similar compression strength as the matrix hydrogel. The hydrated NCHGs swelled more slowly but admitted more water. The drug was incorporated in NPs by swelling in CHX aqueous solution or added to the solution of monomer mixture followed by photopolymerization. Studies of release kinetics revealed that on average 60% of the loaded drug was released. The most rapid release was observed over a 24 h period for matrix gels with low crosslinking density. For NCHGs, the release period exceeded 48 h. An unexpected result was observed for NCHGs without drug in the NPs. In this case, increasing release was observed for the first 24 h. Thereafter, however, the apparent quantity of detectable drug decreased dramatically.  相似文献   

10.
Antimicrobial nanogels, aggregates, and films are prepared by complexation of the antiseptic and bacteriostatic agent chlorhexidine (CHX) for medical and dental applications. A series of α‐, β‐, and γ‐cyclodextrin methacrylate (CD‐MA) containing hydrophobic poly(methyl methacrylate) (PMMA) based nanogels are loaded quantitatively with CHX in aqueous dispersion. The results show that CHX is enhancedly complexed by the use of CD‐MA domains in the particles structure. β‐CD‐MA nanogels present the highest uptake of CHX. Furthermore, it is observed that the uptake of CHX in nanogels is influenced by the hydrophobic PMMA structure. CHX acts as external cross‐linker of nanogels by formation of 1:2 (CHX:CD‐MA) inclusion complexes of two β‐CD‐MA units on the surfaces of two different nanogels. The nanogels adsorb easily onto glass surfaces by physical self‐bonding and formation of a dense crosslinked nanogel film. Biological tests of the applied CHX nanogels with regard to antimicrobial efficiency are successfully performed against Staphylococcus aureus .

  相似文献   


11.
Comparative investigations of adsorption properties of chlorhexidine (CHX) on two cellulose fibers, bleached cotton and viscose, were studied in order to obtain dry gauzes covered with known amount of this antiseptic. Adsorption isotherm results carried out at 293 and 323 K can be described by Langmuir isotherm model, nevertheless, at high concentration correlation is better to Freundlich isotherm. Electrokinetic potential evolution with CHX concentration, shows that initial negative zeta potential of cotton and viscose diminish its absolute value as the concentration of the treatment increases; both fibers present an isoelectric point at high concentration of CHX that is 0.3 mM for viscose and 0.8 mM for cotton. Electrostatic interactions between cationic groups of CHX and carboxylic acid groups of the fibers could explain adsorption at low concentration, but when it is higher than these values, possible hydrogen bonding between the amine groups of CHX and hydroxyl groups of cellulose could explain increasing adsorption when it is hindered by electrostatic repulsion as it is predicted by Freundlich model, that describes heterogeneous surface and multilayer adsorption. Adsorption kinetics isotherms reveal that the process is quick with t 1/2 values of 5.4 min for cotton and 2.8 min for viscose. Differences in adsorption behaviour between the two fibers could be attributed to structural differences as we have observed from estimation of CI index based on FTIR spectra. Values obtained 1.6 for viscose and 2.2 for cotton could explain that the amount of CHX adsorbed on viscose is higher than it is on cotton. Finally desorption experiments performed with 0.01 M of NaCl solution at room temperature and pH 6 reveals the possibility of therapeutical application of these fibers although further investigations must be done to optimize the process.  相似文献   

12.
Therapeutic success in endodontic treatment depends on successful infection control. Alexidine dihydrochloride (ALX) was recently proposed as a potential alternative to 2% chlorhexidine (CHX) as it possesses similar antimicrobial properties, expresses substantivity and does not produce p-chloroaniline (PCA) when mixed with sodium hypochlorite (NaOCl). However, the products released in this reaction have not been described to date. The aim of this study was to identify detected chemical compounds formed in the reaction of ALX and NaOCl with the ultra-high-performance liquid chromatography–mass spectrophotometry (UHPLC-MS) method and assess whether precipitates and PCA are formed in this reaction. Solutions of ALX were mixed with the equivalent volume of 2% and 5.25% (w/v) NaOCl solutions. As control, 2% (w/v) CHX was mixed with 2% and 5.25% (w/v) NaOCl. Samples were subjected to the UHPLC-MS analysis. The mixture of ALX and NaOCl resulted in a yellowish precipitate formation, the amount of which depended on NaOCl concentration. Interaction of ALX and NaOCl resulted in the production of aliphatic amines. No PCA was formed when NaOCl was mixed with ALX. However, for the first time, we identified the possible products of the interaction. The interaction between NaOCl and ALX results in the formation of aliphatic amines; therefore, these compounds should not be mixed during endodontic treatment.  相似文献   

13.
High-integrity solid-contact (SC) polymeric ion sensors have been produced by using spin casting and electropolymerization techniques in the preparation of the SC employing the conductive polymer, poly(3-octylthiophene) (POT). The physical and chemical integrity of the POT SCs have been evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrochemical stability of SC polymeric ion sensors has been investigated using electrochemical impedance spectroscopy (EIS). The results of this study demonstrate that electropolymerization and spin casting methods also comprising annealing of the synthesized SC film are capable of producing SCs that are relatively free of imperfections such as pores and pinholes. This leads to electrochemically stable and robust polymeric ion sensors where the SC/sensor interface is resistant to the formation of a detrimental water layer that normally gives rise to spurious ion fluxes and a degradation in the sensitivity and selectivity of the SC polymeric ion sensor.  相似文献   

14.
《Electroanalysis》2004,16(5):379-385
All‐solid‐state chloride sensors were prepared by incorporation of trihexadecyl‐methylammonium chloride (THMACl) as an ion‐exchanger salt into a conjugated polymer membrane, poly(3‐octylthiophene) (POT). The influence of additional membrane components, such as a lipophilic anion, (potassium tetrakis[3,5‐bis(trifluoromethyl)phenyl] borate), poly(vinyl chloride) (PVC) or a plasticizer, (2‐nitrophenyl octyl ether) were studied. The membrane components were dissolved in chloroform except for PVC, which was dissolved in tetrahydrofuran (THF). The membrane solution was deposited on glassy carbon (GC) by solution casting resulting in all‐solid‐state chloride sensors. The sensor characteristics were determined potentiometrically and with impedance spectroscopy. The addition of plasticizer was found to be crucial in obtaining a well functioning Cl?‐ISE based on POT and THMACl.  相似文献   

15.
Stability-indicating methods are awesome tools to ensure the safety and efficacy of active pharmaceutical ingredients (APIs). An accurate comparative study involving the use of potentiometric sensors for the determination of bromazepam (BRZ) in the presence of its main product of degradation and impurity was performed by the fabrication of two membrane electrodes. A screen-printed electrode (SPE) and a solid-contact glassy carbon electrode (SCE) were fabricated and their performance optimized. The fabricated sensors showed a linear electrochemical response in the concentration range 1.0 × 10−6 M to 1.0 × 10−2 M. The electrodes exhibited Nernstian slopes of 59.70 mV/decade and 58.10 mV/decade for the BRZ-SPE and BRZ-SCE membrane electrodes, respectively. The electrochemical performance was greatly affected by the medium pH. They showed an almost ideal electrochemical performance between pH 3.0 and pH 6.0. The fabricated membranes were applied successfully for the quantification of BRZ in the presence of up to 90% of its degradation product. Moreover, a successful application of the fabricated electrodes was performed for the sensitive and selective quantification of BRZ in its tablet form without any pretreatment procedure.  相似文献   

16.
The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications.  相似文献   

17.
The purpose of this study was to prepare and characterize a controlled release system based on porous silica loaded with chlorhexidine (Cx) and its inclusion compounds in β-cyclodextrin (βcd), and to evaluate its antimicrobial activity. Acetate chlorhexidine (CxA), gluconate chlorhexidine (CxG), βcd:chlorhexidine acetate 2:1 (βcd:CxA) and βcd:chlorhexidine gluconate 2:1 (βcd:CxG) were incorporated into porous silica. Drug loading was characterized by FTIR, powder X-ray diffraction, thermal analysis and BET, and was shown to be in an amorphous state and porous matrix. The kinetics release parameter of the drug was established, which showed that the Cx systems release profile followed zero order release until 400 h and Higuchi model release until 750 h, after the burst effect at the first 8 h. Chlorhexidine therapeutic range was reached near first hour for all systems. The chlorhexidine porous silica system was biologically active against Enterococcus faecalis and Candida albicans in vitro. The systems showed an efficient Cx controlled release modulated by the presence of the β-cyclodextrin and by the porous silica matrices, providing effective antimicrobial activity.  相似文献   

18.
This paper presents the development of a thin‐film quasi‐reference electrode (tQRE), which was fabricated by sputtering silver (Ag) on a conducting gold layer. The Ag layer was subsequently covered by silver chloride (AgCl) with the aid of e‐beam evaporation. The functionality of the tQREs as reliable reference electrodes was confirmed by observing the potential response in solutions with various chloride ion concentrations. The influence of solution pH on the potential change of the tQREs was evaluated. In the solution with controlled ionic strength, the tQREs were able to provide stable and consistent potential outputs. Experimental investigation of the electrochemical sensors with integrated tQREs demonstrated potential applicability of the tQREs to be incorporated into miniaturized and disposable lab‐on‐a‐chip sensors for point‐of‐care/in‐situ measurements.  相似文献   

19.
A new type of potentiometric sensor based on a recently constructed carbon ionic liquid electrode (CILE) is described. Two kinds of ionic liquids, i.e., N‐octylpyridinium hexafluorophosphate (OPFP) and 1‐butyl‐3‐methylimidazoluim hexafluorophosphate (BMFP) were tested as binder for construction of the carbon composite electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with those of the traditional carbon paste electrode (CPE). The results indicate that potentiometric sensors constructed with ionic liquid show an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to CPE.  相似文献   

20.
In this study we report the Zn/La3+ metal organic frameworks (MOFs) were synthesized with the co-precipitation assisted microwave method. Zn/La3+ MOFs were used as a new nanocomposite for the design and construction of a nanosensor based on glassy carbon electrode (GCE). MOFs due to their unique and excellent physicochemical properties can be used in sensors based on glassy carbon electrode (GCE). The synergistic effect of MOFs on glassy carbon electrode increases the power of the limits of detection (LOD). In this study, a new chemical sensor was fabricated by electro polymerization to measure buprenorphine with MOFs based on molecularly imprinted polymer. Zn/La3+ MOFs nanostructures were identified with scanning electron microscopy (SEM), Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and the Fourier-transform infrared spectroscopy (FT-IR) spectra. Buprenorphine was used as a template, pyrrole was used as a monomer, potassium ferrocyanide as an electrochemical active tracer in electropolymerization processes and the parameters affecting the sensor response were optimized. At the Zn/La3+ MOF/MIP electrode, the calibration curve in the linear region was obtained in the concentration range between 4 to 50 ng/ml and the detection limit was 1.08 ng/ml. In a new strategy, Zn/La3+ MOFs nanostructures can be introduced as new materials with high efficiency which used at chemical sensors for detection of the opiates in all over the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号