首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In the last decade the laser Doppler vibrometer (LDV) has become a widely spread instrument for measuring vibrations. It often offers accurate measurements with a high spatial resolution. However, the measurement time of the LDV and especially for the scanning LDV is long. Therefore, reducing the measurement time is an attractive objective. A way to achieve this is to use a single sine excitation (on a resonance frequency). However, this technique has two major drawbacks: the inability to provide information on the damping and a operational deflection shape that can differ from the true mode shape. In this article two methods will be introduced to reduce measurement time without these defaults. In the first method introduced in this article a narrow band multisine is used as excitation signal and the measured vibration signal in the time domain is represented by a model using sines and cosines with these fixed narrow band frequencies. The coefficients of those sines and cosines are then estimated on a global scale by means of a least-squares estimator. An important advantage of this particular technique is that one does not have to measure a full period of the signal, reducing time. The second method accelerates the measurement time for scanning LDV measurements. Using the time domain sequence from each previous scan point and a limited number of time samples from the current scan point, the full time domain sequence of the current scan point can be estimated. Both these methods are a key benefit for in-line quality control, which can have upwards of 1000 spatial measurement locations. The proposed techniques will be validated on both simulations and experiments of varying complexity.  相似文献   

2.
In this study, a novel approach to a measuring methodology and calibration method for an optical non-contact scanning probe system is proposed and verified by experiments. The optical probe consists of a line laser diode and two charge-coupled device (CCD) cameras and is placed on a computer numerical control (CNC) machine to measure the workpiece profiles. A space mapping method using the least-squares algorithm is presented for the probe calibration and profile measurement. This method provides a simple and accurate calculation of the relationship between the real space plane and its related image space plane in a CCD camera. A transparent grid with regularly spaced nodal points is used to construct the space mapping function. The space coordinate of an object can be obtained from its image in the CCD camera via the mapping function. The measured profile data are smoothed by the B-spline blending function and can be transferred to a CAD/CAM package for industrial applications. Experimental results show that this technique can determine the 3-D profile of an object with an accuracy of 60 μm.  相似文献   

3.
攻角是指飞行中弹丸的轴线与其质心运动方向的夹角,是描述弹丸飞行姿态的重要参数,以往都是采用狭缝相机来进行测量。提出了一种基于高速面阵像机测量弹丸攻角的方法。该方法是从面阵序列图像每帧中提取出固定列像元,然后按时序拼接形成一幅图像,等同于线阵扫描的图像;对于扫描速度同影像运动速度不同步时,建立了攻角计算修正模型。采用2台像机从非正交方向进行拍摄,基于面面交会原理,得到三维攻角。实测结果表明:该方法能完成弹速达到1 000 m/s的目标测试,攻角测量精度优于0.1。  相似文献   

4.
In this paper we present an electronic speckle pattern shearing interferometer using a photopolymer diffractive optical element in the form of a holographic grating, in combination with a ground glass to shear the images. The sheared images on the ground glass are further imaged onto a CCD camera. The distance between the grating and the ground glass can be used to control the shear and to vary the sensitivity of the system. The direction of sensitivity is easily controlled by rotation of the diffraction grating around its normal.Introducing photopolymer holographic gratings in ESPSI gives the advantage of using high aperture optical elements at relatively low cost. The fact that the diffractive optical element is a photopolymer layer on glass substrate with thickness of 2 mm makes for a compact optical system.The system was successfully used for detection of the resonant frequencies of a vibrating object.Most of the published work on vibration analysis is analytical. Very few experimental results are available in the literature. The well known laser Doppler vibrometers (LDV) and accelerometers used for modal analysis are pointwise measurement techniques, although multipoint LDV is available at significant cost.Electronic speckle pattern techniques suitable for experimental detection of the resonant frequencies of vibrating objects are very promising for vibration analysis because they are whole field and non-contact.A finite element model is developed for prediction of the vibration modes of the object under test. Detection of vibrational modes of aluminium diaphragm is demonstrated and compared with the theoretical model. The results obtained are very promising for future application of ESPSI systems with HOEs, for modal analysis. A significant advantage of shearography over electronic speckle pattern interferometry is that ESPSI is relatively insensitive to external disturbances. Another advantage of the proposed system is that it could be easily converted to a phase-shifting electronic speckle shearing interferometer.  相似文献   

5.
Electronic speckle pattern interferometry(ESPI) and digital speckle pattern interferometry are wellestablished non-contact measurement methods. They have been widely used to carry out precise deformation mapping. However, the simultaneous two-dimensional(2D) or three-dimensional(3D) deformation measurements using ESPI with phase shifting usually involve complicated and slow equipment. In this Letter, we solve these issues by proposing a modified ESPI system based on double phase modulations with only one laser and one camera. In-plane normal and shear strains are obtained with good quality. This system can also be developed to measure 3D deformation, and it has the potential to carry out faster measurements with a highspeed camera.  相似文献   

6.
This study is focused on exploring the feasibility of an all-optic surface scanning method in determining the size and position of a submerged, laser generated, optoacoustic (OA) source. The optoacoustic effect in this case was generated when the absorption of a short electromagnetic pulse in matter caused a dielectric breakdown, a plasma emission flash and a subsequent acoustic wave. In the experiment, a laser pulse with λ = 1064 nm and 12 ns pulse length was aimed at a volume of deionized water. When the laser beam was focused by a f = 16 mm lens, a single dielectric breakdown spot occurred. When a f = 40 mm was used several breakdowns in a row were induced. The breakdowns were photographed using a double shutter camera. The acoustic wave generated by the dielectric breakdowns were detected at a point on the water surface using a laser Doppler vibrometer (LDV). First, the LDV signal was used to calculate the speed of sound with an accuracy of 10 m/s. Secondly, the location and length of the dielectric breakdown was calculated with an accuracy of 1 mm. The calculated position matched the breakdown location recorded by a camera. The results show that it is possible to use LDV surface measurements from a single spot to determine both the position and length of the OA source as well as the speed of sound in the medium. Furthermore, the LDV measurements also show a secondary peak that originates from the OA source. To unravel the origin and properties of this interesting feature, further investigations are necessary  相似文献   

7.
Optical measurement techniques are being used more and more for quality control in the production process. An important problem when trying to implement optical measurement systems, and in particular the scanning laser Doppler vibrometer (SLDV) which is considered in this paper, is that user interaction is always required. The need for user interaction implies an increase in testing time and cost and also brings an additional source of variability of the test results. In this article, a completely autonomous test procedure is developed to track the vibration behavior of a product during the production process (this includes automatic laser focussing, position calibration, object recognition, grid generation and mode estimation). The proposed procedure typically requires a few minutes only to automatically determine a high-resolution model of the vibration behavior. The method will be validated on measurements of an electronic circuit board.  相似文献   

8.
Many applications require micro-vibration measurement, especially multi-points detection at long distance in real-time. In this paper, a micro-vibration measurement approach based on digital holographic interferometry is proposed for middle-low frequency detection. It can be used to monitor irregular frequency/amplitude vibration in selected region over 10 m away simultaneously and synchronously. A series of experiments were conducted including real-time measurement of 300 Hz, 1 kHz, 2 kHz and 3 kHz constant frequency/amplitude periodic vibration, precision and frequency response tests with calibration of LDV, 1 kHz irregular amplitude vibration, irregular frequency/amplitude vibration as well as the real-time measurement and simultaneous display of multi-points vibration. The experimental results demonstrate the feasibility of the proposed method and reveal its unique advantages.  相似文献   

9.
The high-precision measurement of a string?s motion requires either the use of an expensive apparatus or the development of a dedicated system. In this paper, a cheaper alternative based on opto-switch sensors combined with a suitable calibration is proposed. A sensitivity model requiring only two straightforward preliminary measurements to determine the parameters is presented. A comparison on a bench test between the opto-switch sensor and a high-speed camera has been performed. Results indicate that the calibrated opto-switch provides more accurate measurements of the string?s motion in quasi-static as well as in dynamic states.  相似文献   

10.
The structured light 3D measurement system with camera–projector has been widely studied and applied because of its characteristics of simple structure. In practice, we find that slight shock, vibration, or long-term applying may slightly reduce its level of measurement accuracy; thus, correcting the system parameters is occasionally necessary. However, most calibration algorithms are complicated and time-consuming procedures, not suitable for flexible and rapid precise calibration operation. To address this limitation, a flexible and rapid system parameter micro-optimization algorithm based on an implicit projection model is proposed. With a flexible measurement of an arbitrary 3D gauge, the system parameters are optimized rapidly by Levenberg-Marquardt (L-M) algorithm; thus, the high degree of accuracy of the system can be restored. Experiments were performed to validate the availability and reliability of the adjustment method. The algorithm can meet the convenient and real-time accuracy maintenance in practical application for structured light 3D measurement system.  相似文献   

11.
针对目前微观三维表面形貌测量技术中存在检测效率和测量范围较小的问题,提出一种基于双线阵相机的线扫描差动共聚焦三维形貌测量方法。采用线扫描光源,利用线扫描拼接算法,分别合成焦前和焦后图像;再利用差动算法获得样本位于测量区域的差动图像,结合预先刻度的轴向响应曲线,完成样本的三维形貌还原,实现大范围高效测量。实验结果证明:基于双线阵相机的线扫描差动共聚焦三维形貌测量方法在相同时间内测量范围和测量效率分别是白光干涉仪的16.48倍和6.59倍,并且该方法在测量过程中不需要停顿,只需实现一次对焦,就可以对样品进行连续不间断的扫描检测。研究成果为满足智能制造中在线在位、实时高效、大范围测量的检测需求提供依据。  相似文献   

12.
Laser Doppler vibrometer (LVD) has been the most favorite instrument for precision dynamics measurement due to its non-contact, high accuracy and high resolution. However, LDV can only give the dynamic data of a particular location on the entire feature. In order to get the whole field data, a laser beam-scanning mechanism has to be implemented. Currently, motor-driven scanning mirror is used to move the measurement probe from one point to another. The mechanical vibrations of the scanning mirror will reduce the measurement accuracy. This paper introduces a novel scanning LDV optical system embodied in an acousto-optic deflector scanning mechanism. It can improve the measurement accuracy since there is no mechanical motion involved. One main advantage of this system is that it generates a laser scanning beam in parallel that is different from the beam scanning in the conventional scanning laser Doppler vibrometer (SLDV). The new system has a board scanning range. The measurement target size ranges from few tens of millimeters down to 10 μm. We have demonstrated the capability of the novel system on scanning measurements of features as big as ultra-precision cutting tool to features as tiny as AFM cantilever. We believe that the novel SLDV will find profound potential applications in the precision engineering field.  相似文献   

13.
Camera calibration plays an important role in the field of machine vision applications. During the process of camera calibration, nonlinear optimization technique is crucial to obtain the best performance of camera parameters. Currently, the existing optimization method aims at minimizing the distance error between the detected image point and the calculated back-projected image point, based on 2D image pixels coordinate. However, the vision measurement process is conducted in 3D space while the optimization method generally adopted is carried out in 2D image plane. Moreover, the error criterion with respect to optimization and measurement is different. In other words, the equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. All the reasons mentioned above will cause accuracy decrease for 3D vision measurement. To solve the problem, a novel optimization method of camera parameters used for vision measurement is proposed. The presented method is devoted to minimizing the metric distance error between the calculated point and the real point in 3D measurement coordinate system. Comparatively, the initial camera parameters acquired through linear calibration are optimized through two different methods: one is the conventional method and the other is the novel method presented by this paper. Also, the calibration accuracy and measurement accuracy of the parameters obtained by the two methods are thoroughly analyzed and the choice of a suitable accuracy evaluation method is discussed. Simulative and real experiments to estimate the performance of the proposed method on test data are reported, and the results show that the proposed 3D optimization method is quite efficient to improve measurement accuracy compared with traditional method. It can meet the practical requirement of high precision in 3D vision metrology engineering.  相似文献   

14.
A simple and accurate algorithm (phase scanning method) is proposed for 3D surface contouring and dynamic response determination of a vibrating object. A sinusoidal fringe pattern is projected onto a low-frequency vibrating object by a programmable liquid crystal display projector. The fringe patterns are captured by a high-speed CCD camera with a telecentric gauging lens. Phase values are evaluated point by point using phase scanning method. From the phase values of each point on the object, the contour of the specimen at different instants of vibration can be retrieved. In this paper, a small vibrating coin is used to demonstrate the validity of the method and the experimental results are compared with test results on a stationary coin using four-step phase shifting and fast Fourier transform methods. The technique is especially useful in applications where the vibrating object has a complicated shape.  相似文献   

15.
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system.  相似文献   

16.
星载TDICCD界面颤动的动力学模型及共振点扫描研究   总被引:3,自引:3,他引:0  
陈丁跃  周仁魁  李英才  陈蔚 《光子学报》2004,33(12):1508-1512
简要分析了高分辨率星载遥感TDICCD相机的成像原理,研究了基于混合界面颤动的星载遥感TDICCD相机动力学分析模型.结果表明:星载遥感TDICCD相机对地观测时,载体部件的运动使相机产生振动响应,该响应会对成像质量有影响;对星载TDICCD相机进行了共振点扫描试验,试验测量了多点的加速度信号,并用信号分析仪进行了数据处理,获得了星载遥感TDICCD相机共振点扫描结果.这些动态特性结果为星载遥感TDICCD相机的防振、隔振设计提供了参考.  相似文献   

17.
In this paper, we propose a novel thermal three-dimensional (3D) modeling system that includes 3D shape, visual, and thermal infrared information and solves a registration problem among these three types of information. The proposed system consists of a projector, a visual camera and, a thermal camera (PVT). To generate 3D shape information, we use a structured light technique, which consists of a visual camera and a projector. A thermal camera is added to the structured light system in order to provide thermal information. To solve the correspondence problem between the three sensors, we use three-view geometry. Finally, we obtain registered PVT data, which includes visual, thermal, and 3D shape information. Among various potential applications such as industrial measurements, biological experiments, military usage, and so on, we have adapted the proposed method to biometrics, particularly for face recognition. With the proposed method, we obtain multi-modal 3D face data that includes not only textural information but also data regarding head pose, 3D shape, and thermal information. Experimental results show that the performance of the proposed face recognition system is not limited by head pose variation which is a serious problem in face recognition.  相似文献   

18.
In this paper it has been described part of the research devoted to the development of a complete non-intrusive experimental modal analysis procedure based on laser techniques both for excitation and for measurement. In particular, attention has been focused on the thermal effects generated by laser pulses on the excited structure. An analytical model of the energy exchange between the light pulse and the target surface is proposed together with a finite element model of thermal and mechanical behaviour of the structure under excitation. Both the models (analytical and numerical) have been experimentally validated by measuring the thermal and the vibration responses induced by the laser pulses. The experimental part of the study has been performed on a cantilever beam excited with laser pulses from an Nd : YAG source (532 nm, 100 mJ/pulse) using an high-speed infrared camera and a scanning laser Doppler vibrometer. Results from this work can be used to improve understanding concerning the features of laser excitation and to establish a mechanical equivalent system of forces and moments, useful in order to increase the accuracy in the measurements of modal parameters when laser pulses are used as excitation sources.  相似文献   

19.
Particle Imaging Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements on a self-induced sloshing flow in a rectangular tank had been conducted in the present study. The PIV measurement result was compared with LDV measurement result quantitatively in order to evaluate the accuracy level of the PIV measurement. The comparison results show that the PIV and LDV measurement results agree with each other well in general for both mean velocity and fluctuations of the velocity components. The average disagreement level of the mean velocity between PIV and LDV measurement results was found to be within 3% of the target velocity for the PIV system parameter selection. Bigger disagreements between the PIV and LDV measurement results were found to concentrate at high shear regions. The spatial resolution and temporal resolution differences of the PIV and LDV measurements and the limited frames of the PIV instantaneous results were suggested to be the main reasons for the disagreement.  相似文献   

20.
复杂轮廓表面激光检测及三维重构技术的研究   总被引:4,自引:0,他引:4  
赵勇  廖延彪  赖淑蓉 《光学技术》2002,28(2):172-173
基于零件实物样件的几何模型反求技术已成为CAD/CAM领域中的研究热点之一。以航空航天用MJ螺纹为对象 ,对逆向工程中的两大关键技术———表面数字化及三维重构技术进行了分析和研究。提出了用一种新型激光光纤传感器实现复杂轮廓表面的非接触数字化检测方法 ,描述了测量原理。通过二维截面轮廓图重构三维面型 ,初步的实验结果验证了此方法的有效性和实用性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号