首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, a molecularly imprinted electrochemical sensor (MIP/DA) was investigated for selective and sensitive determination of dopamine (DA) by electrochemical polymerization of p-aminothiophenol in the presence of DA on gold electrode. According to electrochemical behaviour of the sensor, gained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), MIP/DA sensor showed distinctive electron transfer characteristics in comparison to the non-imprinted (NIP/DA) sensor. Besides the MIP/DA sensor showed high selectivity for dopamine through its analyte specific cavities. The sensor had a broad working range of 5.0×10−8–2.0×10−7 M with a limit of detection (LOD) of 1.8×10−8 M and the developed sensor was successfully applied for determination of dopamine in pharmaceutical samples.  相似文献   

2.
《Electroanalysis》2017,29(11):2551-2558
The electrochemical oxidation of Sotalol (SOT) based on Tetrazolium Blue (TB)/gold nanoparticles (GNPs)‐modified carbon paste electrodes (CPE) have been studied in the presence of sodium lauryl sulphate (SLS). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and electrochemical impedance spectroscopy (EIS) techniques have all been utilized within this study. GNPs and TB have a synergetic effect‐giving rise to highly improved electrochemical responses and provide an advantageous platform for the basis of an electrochemical sensor with excellent performance. The experimental parameters, electrodeposition time, pH and scan rate have all been examined and optimized. The sensing of SOT via DPV is found to exhibit a wide linear dynamic range of 1.0×10−7–7.5×10−4 M in pH 2. LOD and LOQ were calculated and found to correspond to 2.5×10−8 M and 8.3×10−8 M, respectively. The suggested sensor has been used successfully for SOT determination in pharmaceutical samples and human urine as real samples. Satisfactory recoveries of analyte from these samples are demonstrated indicating that the suggested sensor is highly suitable for clinical analysis, quality control and a routine determination of SOT in pharmaceutical formulations.  相似文献   

3.
We have developed a molecularly imprinted polymer (MIP) electrochemical sensor for entacapone (ETC) based on an electropolymerised polyphenylenediamine (Po-PD) on a glassy carbon electrode (GCE) surface. The direct electropolymerisation of the o-phenylenediamine monomer (o-PD) was carried out with ETC as a template. The steps of electropolymerization process, template removal and binding of the analyte were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/[Fe(CN)6]4 − as a redox probe. The operation of the sensor has been investigated by differential pulse voltammetry (DPV). Under optimal experimental conditions, the response of the DPV was linearly proportional to the ETC concentration between 1.0×10−7 and 5.0×10−6 M ETC with a limit of detection (LOD) of 5.0×10−8 M. The developed sensor had excellent selectivity without detectable cross-reactivity for levodopa and carbidopa. The MIP sensor was successfully used to detect ETC in spiked human serum samples.  相似文献   

4.
In this study, molecularly imprinted polymer (MIP) was prepared and used in the preparation of carbon paste electrode (CPE) for the quantification of bisoprolol fumarate (BF) in pure, pharmaceutical formulation and biological fluids. The selective MIP for BF was synthesized from methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker in dimethyl sulfoxide solution, BF as the template molecule and 2, 2-azobisisobutyronitrile (AIBN) as the initiator. The non-imprinted polymer (NIP) was synthesized by the same procedure, but in the absence of the template molecule then incorporated in the paste of the carbon paste electrodes (CPEs). The prepared MIP for BF and its corresponding NIP were well characterized using scanning electron microscopy (SEM), Fourier transform infrared spectrometer, and thermal gravimetric analysis (TGA). The MIP and NIP based CPEs were further used for the determination of BF and the obtained results indicated that the sensor modified by the MIP have much higher recognition power for the BF molecules than the NIP based sensor where the MIP based CPE exhibited a Nernstian response 29.50±0.55 mV decade−1 within a concentration range of 1.0×10−7–1.0×10−2 mol L−1and pH independence in the range 3.50–7.15. The proposed sensor has high selectivity over several possible interfering compounds. The obtained results by the proposed sensor were satisfactory with excellent percentage recovery and relative standard deviation and were comparable with those obtained from HPLC reported method.  相似文献   

5.
The presence of profenofos (PFF) in food has been strictly limited by legislation due to its genotoxic and toxic effects on health. It is therefore very important to establish simple and rapid analytical methods to detect traces of this insecticide. A reusable molecularly imprinted polypyrrole MIP(O-PPy) on a glassy carbon electrode (GCE) has been developed to measure PFF. The PPy was polymerized by cyclic voltammetry (CV) in the presence of template molecules (PFF) in an acidic solution on a GCE. The various experimental parameters such as film thickness, analyte/monomer ratio, and removal/rebinding requirements were examined and optimized. The signal of the redox probe (ferrocyanide/ferrocyanide) was used for the electrochemical detections. All steps of the sensor manufacturing, removal/rebinding of template molecules, and response to different PFF concentrations were tested by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor was able to detect PFF in the linear ranges of 1.0×10−9 to 1.0×10−6 M and 1.0×10−9 to 5.0×10−6 M, with detection limits, a signal-to-noise ratio (S/N) of three was used to estimate LOD, of about 1 nM using DPV and EIS, respectively. The MIP (PPy) GCE provided excellent PFF recognition performance and was successfully used to quantify PFF in sweet pepper samples, yielding recoveries not greater than 108 %.  相似文献   

6.
《Electroanalysis》2017,29(11):2579-2590
In this study, an electrochemical sensor was developed and used for selective determination of bisfenol‐A (BPA) by integrating sol‐gel technique and multi‐walled carbon nanotubes (MWCNTs) modified paste electrode. BPA bounded by covalently to isocyanatopropyl‐triethoxy silane (ICPTS) was synthesized as a new precursor (BPA‐ICPTS) and then BPA‐imprinted polymer (BPA‐IP) sol‐gel was prepared by using tetramethoxysilane (TMOS) and BPA‐ICPTS. Non‐imprinted polymer (NIP) sol‐gel was obtained by using TMOS and (3‐Aminopropyl) triethoxysilane. Both BPA‐IP and NIP sol‐gels were characterized by nitrogen adsorption‐desorption analysis, FTIR, SEM, particle size analyzer and optical microscope. Carbon paste sensor electrode was fabricated by mixing the newly synthesized BPA‐IP with MWCNTs, graphite powder and paraffin oil. The electrochemical characterization of the sensor electrode was achieved with cyclic and differential pulse voltammetric techniques. The response of the developed sensor under the most proper conditions was linear in BPA concentration range from 4.0×10−9 to 1.0×10−7 mol L−1 and 5.0×10−7 to 5.0×10−5 mol L−1 and the detection limit was 4.4×10−9 mol L−1. The results unclosed that the proposed sensor displayed high sensitivity and selectivity, superior electrochemical performance and rapid response to BPA.  相似文献   

7.
《Electroanalysis》2017,29(2):506-513
A simple and highly sensitive sensor has been used for the determination of oxomemazine hydrochloride (OXO) in presence of paracetamol (PAR) and guaifenesin (GU). Carbon paste electrode was modified with multiwalled carbon nanotube (MWCNT), alizarine red S (AZ) and chitosan (CH). Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the nanostructure and performance of the sensor. Under the optimized experimental conditions OXO gave linear response over the range of 2.00×10−6–1.00×10−4 mol L−1. The detection limit was found to be 4.35×10−7 mol L−1. The practical application of the modified electrode was demonstrated by measuring the concentration of OXO in pharmaceutical samples and urine. This revealed that suggested sensor shows excellent analytical performance for the determination of OXO in terms of a very low detection limit, high sensitivity and selectivity.  相似文献   

8.
《Analytical letters》2012,45(7):1132-1144
Molecular imprinting and sol-gel technique were combined to develop a molecular imprinted polymer (MIP) based electrochemical sensor in this work. With the successive modification of multi-walled carbon nanotubes (MWNTs) and gold nanoparticles (GNPs), a modified glassy carbon electrode (GCE) was immersed in a sol-gel solution in the presence of paracetamol (PR) for the electropolymerization to fabricate an imprinted sensor. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were employed to characterize the constructed sensor. The factors for the sensor preparation, the electropolymerization potential range, the monomer concentration, and the scan rate for the sensor preparation were optimized. The sensor displayed an excellent recognition capacity toward PR compared with other analogues. Additionally, the DPV peak current was linear to the PR concentration in the range from 8.0 × 10?8 to 5.0 × 10?5 mol/L, with a detection limit of 4.0 × 10?8 mol/L. The prepared sensor also showed satisfactory reproducibility and regeneration capacity.  相似文献   

9.
A novel urea electrochemical sensor was constructed based on chitosan molecularly imprinted films which were prepared by potentiostatic electrodeposition of chitosan in the presence of urea followed by eluting with 0.1 M KCl. Various techniques were carried out to investigate the formation of molecularly imprinted polymer (MIP) films and the performance of the sensor. According to our expectation, the urea MIP electrochemical sensor showed excellent selectivity to urea among the structural similarities and co‐existences, high linear sensitivity to urea in the range from 1.0×10?8 to 4.0×10?5 M with a detection limit of 5.0×10?9 M. Furthermore, the recovery ranged from 96.3 % to 103.3 % and therefore offered great potential for clinical diagnosis applications.  相似文献   

10.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

11.
The authors describe the preparation of a molecularly imprinted polymer (MIP) film on the surface of electrodeposited hollow nickel nanospheres (hNiNS), and the use of this nanocomposite in an electrochemical sensor for dopamine (DA). The use of the 3-dimensional hNiNS as a support material enlarges the sensing area and conductivity, while the MIP film warrants improved selectivity for DA. Quantification based on the “MIP/gate effect” was performed by employing hexacyanoferrate as the electrochemical probe. Scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy were applied to characterize the sensor materials. The electropolymerization condition such as pH value, functional monomer and ratio of template to monomer were optimized. By using dopamine (DA) as a model analyte, the sensor, if operated at 0.1 V vs. SCE, has fairly low detection limit of 1.7?×?10?14 M (at an S/N ratio of 3), two wide assay ranges of 5?×?10?14 to 1?×?10?12 M and 1?×?10?12 to 5?×?10?11 M, and superb selectivity.
Graphical Abstract An electrochemical sensor platform with a novel composite film composed of hollow nickel nanospheres (hNiNS) and molecularly imprinted polymer (MIP) was developed via a facile double-elecrodeposition method. The synergistic effects of hNiNS and MIP guarantee the ultrahigh sensitivity (down to 10?2 ppt) and selectivity of the sensor.
  相似文献   

12.
A molecularly imprinted polymer (MIP) sensor was successfully constructed on glassy carbon electrode for the determination of 1-naphthol (1-Nph). The sensor was constructed by electropolymerization on bare GCE in the presence of the target molecule. The recognition of 1-Nph was conducted indirectly using [Fe(CN)6]3−/4− as redox probe. The MIP sensor presented wide linear working range and limit of detection of 1.5×10−9 mol L−1. The MIP sensor was applied for the determination of 1-Nph in oilfield produced water. The results obtained showed good selectivity and sensitivity of the proposed sensor in terms of 1-Nph quantification.  相似文献   

13.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

14.
《Electroanalysis》2017,29(3):708-715
The wide use of pesticides can lead to environmental and human adverse effects. Diazinon, as an organophosphorous pesticide, is used in agriculture because of its low cost and high efficiency on insects. Due to the increasing application of pesticides, accurate analytical methods are necessary. The aim of this work was modification of carbon paste electrode composition and applying it as a sensor for determination of diazinon in biological and environmental samples. Multi‐walls carbon nanotubes and a molecularly imprinted polymer were used as modifiers in the sensor composition. A molecularly imprinted polymer and a non‐imprinted polymer were synthesized for applying in the electrode. After optimization of electrode composition, it was used to determine the analyte concentration. Instrumental parameters affecting the square wave voltammetric response were adjusted to obtain the highest current intensity. The modified electrode with MIP showed very high recognition ability compared to the electrode containing NIP. The obtained linear range was 5×10−10 to 1×10−6 mol L−1. The detection limit of the sensor was 1.3×10−10 mol L−1 and the relative standard deviation for analysis of target molecule by the proposed sensor was 2.87 %. This sensor was used to determine the diazinon in real samples (human urine, tap, and river water samples) without special sample preparation before analysis. The optimization of electrode composition containing mentioned modifiers improved its response considerably.  相似文献   

15.
An electrochemical sensor for amoxicillin (AMX) detection based on reduced graphene oxide (RGO), molecular imprinted overoxidized polypyrrole (MIOPPy) modified with gold nanoparticles (AuNPs) is described in this work. The electrochemical behavior of the imprinted and non‐imprinted polymer (NIP) was carried out by cyclic voltammetry (CV) and impedance spectroscopy (IS). The structure and morphology of the prepared MIP sensor were characterized by scanning electron microscopy (SEM), UV‐Visible, Fourier transform infrared spectroscopy (FTIR) and its experimental parameters such as monomer and template concentration, pH buffer solution, incubation time of AMX and AuNPs, scan rate as well as electropolymerization scan cycles were optimized to improve the performance of the sensor. The peak current obtained at the MIP electrode was proportional to the AMX concentration in the range from 10?8 to 10?3 mol L?1 with a detection limit and sensitivity of 1.22 10?6 mol L?1 (Signal to noise ratio=3) and 2.52×10?6 μAmol?1 L, respectively. It was also found that this sensor exhibited reproducibility and excellent selectivity against molecules with similar chemical structures. Besides, the analytical application of the AMX sensor confirms the feasibility of AMX detection in milk and human serum.  相似文献   

16.
Dicloran pesticide is used to inhibit the fungal spore germination for different crops. Because of the increasing application of pesticides, reliable and accurate analytical methods are necessary. The aim of this work is designing the highly selective sensor to determine the dicloran in biological and environmental samples. Multi-walls carbon nanotubes and a molecularly imprinted polymer (MIP) were used as modifiers in the sensor composition. A dicloran MIP and a nonimprinted polymer (NIP) were synthesized and applied in the carbon paste electrode. After the optimization of electrode composition, it was used to determine the concentration of analyte. Parameters affecting the sensor response were optimized, such as sample pH, electrolyte concentration and its pH, and the instrumental parameters of square wave voltammetry. The MIP-CP electrode showed very high recognition ability in comparison with NIP-CP. The obtained linear range was 1 × 10?6 to 1 × 10?9 mol L?1. The detection limit was 4.8 × 10?10 mol L?1. This sensor was used to determine the dicloran in real samples (human urine, tap and river water samples) without special sample preparation before analysis. All important parameters were optimized, improving the sensor response considerably.  相似文献   

17.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

18.
A potentiometric sensor modified with a nanocomposite of montmorillonite sheets decorated with polyaniline nanofibers (MT-PANI-NFs) as an efficient electroactive material and tricresyl phosphate (TCP) as a solvent mediator has been developed for the estimation of clomipramine HCl (CLP.HCl). The optimum potentiometric performance of the sensor was achieved by mixing of MT-PANI-NFs : TCP : graphene with a ratio of 2.69 : 30.11 : 67.20 (% wt/wt). The sensor exhibited a Nernstian slope of 59.0±0.1 mV decade−1 over the concentration range of 1.0×10−5−1.0×10−2 mol L−1 with a theoretically calculated detection limit of 5.0×10−6 mol L−1. The sensor performance was scrutinized in terms of several factors including thermal stability, pH effect, response time and selectivity. As, it displayed a high thermal stability at various temperature degrees (10–60 °C) with pH independency in the range of 3.5–8.5. Additionally, the developed sensor exhibited a very rapid performance for CLP.HCl detection with a fast response time of 4 s and reflecting a superior selectivity towards CLP.HCl over the other interfering species. SEM (scanning electron microscope) was used as a characteristic tool for the investigation of the proposed graphene sensor surface. Furthermore, the graphene sensor has been efficiently used for CLP.HCl estimation in its pharmaceutical formulations.  相似文献   

19.
During COVID-19 pandemic, coagulopathy have been reported as a potential threat to most infected patients. Edoxaban (EDX) is a direct oral anticoagulant that is recently added to most COVID-19 treatment protocols either as therapy or prophylaxis. Herein, a novel nanoparticles modified glassy carbon potentiometric sensor was developed for the selective quantitation of EDX in human plasma. The electrochemical performance of the proposed sensor was assessed and compared to nanoparticle free sensor. An enhancement in electrode performance including: detection limit (3.39×10−6 mol L−1), response time (8.0±2.0 s) and improved selectivity. The proposed sensor was able to determine EDX in pure form, pharmaceutical formulation and human plasma.  相似文献   

20.
《中国化学会会志》2018,65(6):743-749
A glassy carbon electrode (GCE) modified with a copper‐based metal‐organic framework (MOF) [HKUST‐1, HKUST‐1 = Cu3(BTC)2 (BTC = 1,3,5‐benzenetricarboxylicacid)] was developed as a highly sensitive and simple electrochemical sensor for the determination of dopamine (DA). The MOF was prepared by a hydrothermal process, and the morphology and crystal phase of the MOF were characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD), respectively. Meanwhile, the electrochemical performance was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the modified electrode showed excellent electrocatalytic activity and high selectivity toward DA. The linear response range was from 5.0 × 10−7 to 1.0 × 10−4 M and the detection limit was as low as 1.5 × 10−7 M. Moreover, the electrochemical sensor was used to detect DA in real samples with excellent results. MOF‐based sensors hold great promise for routine sensing applications in the field of electrochemical sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号