首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents the results of studying the influence of silicone polymer pore filler on the macroscopic quasi-static and dynamic compressive behaviour of aluminium foam with irregular open-cell structure. The study is based on a mechanical experimental testing programme, where the deformation mechanism and mechanical energy absorption capacity of aluminium foam with silicone pore filler have been observed for the first time. As plastic yielding is accompanied by significant heat energy dissipation, this study was additionally supported by thermal imaging, which enables visualization of plastification to better understand the deformation process of observed specimens. The influence of specimen size on the behaviour of aluminium foam specimens has also been investigated. The results show that introduction of silicone pore filler considerably increases the energy absorption capacity at almost unchanged densification strain under both quasi-static and dynamic loading conditions. The silicone pore filler also significantly influences the deformation behaviour of aluminium foam specimens, which is manifested in a different stress distribution and a significant transverse deformation with conical plastification front. However, only a minor difference in response of different size specimens has been observed.  相似文献   

2.
The mechanical properties and response of two polypropylene (PP)-based composites have been determined for small strains and for a range of strain rates in the quasi-static domain. These two materials are talc-filled and unfilled high-impact PP. Uniaxial tensile tests were performed at different strain rates in order to characterize the mechanical response and the strain rate effect. The experimental results showed that both unfilled and talc-filled high-impact PP were sensitive to strain rate and exhibited nonlinear behavior even at relatively low strains. SEM analysis was conducted to obtain a better comprehension of deformation mechanisms involved during loading by observations of the microstructure evolution. For each of these two materials, two existing modeling approaches are proposed. The first one is a three-parameter nonlinear constitutive model based on the experimental results. The second is a micromechanically based approach for the elastic-viscoplastic behavior of the composite materials. The stress-strain curves predicted by these models are in fairly good agreement with our experimental results. Published in Russian in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 6, pp. 1051–1059. This article was submitted by the authors in English.  相似文献   

3.
The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digital image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. It is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.  相似文献   

4.
This work aims at characterizing the mechanical behaviour of polymethyl-methacrylate (PMMA) under high velocity impact conditions over a wide range of testing temperatures. To this end, the mechanical response at uniaxial compression is studied for both quasi-static and dynamic conditions covering testing temperatures below, at and above glass transition. A pseudo-brittle to ductile transition in the failure of PMMA is observed at a threshold that depends on testing temperature and strain rate. This analysis allows for the interpretation of the perforation impact tests and to explain the principal deformation and failure mechanisms. To complete the study, the Richeton model to predict yielding is revisited. Finally, we provide a new constitutive model for finite deformations to further identify the deformation mechanisms governing the mechanical behaviour of PMMA and the influence of temperature and strain rate on them.  相似文献   

5.
Studies are presented on dependency of dynamic interlaminar shear (ILS) strength on the experimental technique used for a typical plain weave E-glass/epoxy composite. Dynamic ILS strength was determined based on two experimental techniques, namely torsional split Hopkinson bar (TSHB) apparatus using thin walled tubular specimens and compressive split Hopkinson pressure bar (SHPB) apparatus using single lap specimens. The results obtained from these techniques are compared. In general, it is observed that dynamic ILS strength for composites obtained by TSHB testing using thin walled tubular specimens is lower than the dynamic ILS strength obtained using single lap specimens in compressive SHPB. The issues involved in TSHB testing of thin walled tubular specimens made of composites are discussed and the reasons for reduced dynamic ILS strength using thin walled tubular specimens are highlighted. Finite element analysis (FEA) of thin walled tubular specimens made of composite and resin subjected to quasi-static torsional loading is presented. Using FEA results, the reasons for lower ILS strength of composite thin walled tubular specimens are substantiated.  相似文献   

6.
Quasi-static and dynamic compressive tests are undertaken on the polyurethane (PU) foam and fumed silica reinforced polyurethane (PU/SiO2) foam experimentally. The ceramic microspheres with varying mass fractions are adopted to mix with the PU/SiO2 foam to fabricate the composite particle-reinforced foams. The effects of strain rate and particle mass fraction are discussed to identify and quantify the compressive response, energy-absorbing characteristic, and the associated mechanisms of the composite foams. The results show the initial collapse strength and plateau stress of the foams are improved significantly by reinforcing with the ceramic microsphere within 60 wt% at quasi-static compression. The rate sensitivity is observed on all the foams, but in different patterns due to the influence of ceramic microsphere. The compressive response affected by ceramic microsphere can be attributed to the particle cluster effect and stress wave propagation. Together with the deformation, the compressive characteristic experiences non-monotonic change from the low to high strain rates. The specific energy absorption (SEA) of the foam with 41 wt% ceramic microsphere show the largest magnitude at quasi-static compression. With the increasing strain rate, the ceramic reinforced foam exhibits superior energy absorption efficiency at high strain rates to that of the pure foams.  相似文献   

7.
Yielding behaviour under compressive loading of two materials based on polypropylene, an isotactic homopolymer and an ethylene-propylene block copolymer, is studied at different strain rates and temperatures. Quasi-static tests, performed in electromechanical machines, and dynamic tests, carried out in a Hopkinson bar, were compared and simultaneously analyzed to generate a master curve representative of the material yielding, assuming the strain rate-temperature superposition principle. Experimental data were fitted to equations based on the cooperative model for semi-crystalline polymers.  相似文献   

8.
The results of a comprehensive mechanical analysis of five silicone-based elastomers are presented. Large strain monotonic tests were performed under uniaxial, strip biaxial and equi-biaxial stress states. Based on the multiaxial experimental data, hyperelastic constitutive models were determined for each material. The small strain elastic modulus ranges from 49 kPa to 1.5 MPa, and the materials show different degrees of non-linearity of their stress-strain response. Data on the time and history dependence allow determining the deviation from the behavior predicted using a non-dissipative hyperelastic constitutive model. Next to representing a guideline for a comprehensive characterization of highly deformable materials, the present results provide data which can be used for the selection of an appropriate material, depending on the specific application. The corresponding models can be used to simulate the performance of each elastomer in applications involving large strains and multiaxial loading states.  相似文献   

9.
10.
This article presents engineering approaches to evaluate creep loading response and a complete loading–unloading procedure for rubber components used as anti-vibration applications. A damage function for creep loading and a rebound resilience function for mechanical unloading are introduced into hyperelastic models independently. Hence, a hyperelastic model can be extended for both creep and unloading evaluations. A typical rubber product and a dumbbell specimen were selected to validate the proposed approaches. It has been demonstrated that the predictions offered by the new models are consistent with the experimental data. In addition, a loading procedure using the same final value, with and without involving unloading, prior to a creep test can produce different results. The proposed approach can capture this phenomenon which was observed in the literature. The proposed approach can also be easily incorporated into commercial finite element software (e.g., Abaqus). It is demonstrated that the proposed method may be used for anti-vibration products at an appropriate design stage.  相似文献   

11.
In this study, an experimental investigation is performed to observe the electromechanical response of CB (carbon black)/Acrylonitrile butadiene styrene (ABS) additive manufactured composite under quasi-static (tensile, shear, and mode-I fracture) and dynamic (mode-I fracture) loading conditions for the potential damage sensing applications. Dog bone tensile, double v-notch shear, and single edge notch bending (SENB) specimen printed with three different configurations (0°/90°, +45°/-45°, and 0°) are considered for the quasi-static condition. A modified split Hopkinson pressure bar along with high-speed video camera is used for dynamic fracture experiments. Four-point probe technique coupled with a high-resolution data acquisition system is employed to obtain the real-time electrical response. In the case of tensile loading, +45°/-45° printed specimens show a nonlinear change of electrical resistance due to unique failure mode. Under the shear loading, electrical resistance remains unchanged during the elastic deformation. After the damage evolution, +45°/-45° printed specimens exhibit a higher rate of change in electrical resistance due to alignment of the filaments along the maximum principle shear stress direction. For both static and dynamic fracture loading, a minimal change of electrical resistance is observed before crack initiation. However, after the crack initiation, a sharp change of electrical resistance for 0°/90° printed specimens indicates a faster crack propagation as compared to the +45°/-45° printed specimens.  相似文献   

12.
In the present research, a novel dynamic constitutive micromechanical (DCM) model was developed to predict the strain rate dependent mechanical behavior of laminated glass/epoxy composites. The present model is an integration of the generalized strain rate dependent constitutive model as a constitutive model for the neat polymer, the plasticity model of Huang as a micromechanical model, and dynamic progressive failure criteria. This model is able to predict the longitudinal and transverse tensile and in-plane shear behaviors of unidirectional glass/epoxy composites with arbitrary fiber volume fractions at arbitrary strain rates. The present model can also predict the stress-strain behavior of laminated composites with different layups and fiber volume fractions at arbitrary strain rates. A comparison between the results predicted by the present model and the available experimental data showed that the model predicts the strain rate dependent mechanical behavior of glass/epoxy composites with very good accuracy.  相似文献   

13.
Starting from an analysis of filler networking in bulk polymers, a constitutive micro-mechanical model of stress softening and hysteresis of filler reinforced polymer networks is developed. It refers to a non-affine tube model of rubber elasticity, including hydrodynamic amplification of the rubber matrix by a fraction of hard, rigid filler clusters with filler-filler bonds in the unbroken, virgin state. The filler-induced hysteresis is described by an anisotropic free energy density, considering the cyclic breakdown and re-aggregation of the residual fraction of soft filler clusters with already broken, damaged filler-filler bonds. Experimental investigations of the quasi-static stress-strain behaviour of silica and carbon black filled rubbers up to large strain agree well with adaptations found by the developed model. The microscopic material parameters obtained appear reasonable, providing information on the mean size and distribution width of filler clusters, the tensile strength of filler-filler bonds and the polymer network chain density.  相似文献   

14.
Viscoelastic and poroelastic materials are widely used in multilayer panels for noise control. They are usually used as an inner decoupling layer in double wall systems in order to increase the sound transmission loss of a bare plate. In order to correctly simulate the acoustical behaviour of such systems, it is necessary to measure the elastic parameters of these materials (storage and loss moduli, and Poisson's ratio). Physical properties related to pore morphology also need to be determined for open cell structures. Most of the materials used in trimmed panels can show elastic parameters that vary with frequency, thus a quasi-static measurement technique is not accurate enough to consider such viscoelasticity effects. This paper focuses on the estimation of complex modulus as a function of the frequency of isotropic viscoelastic materials. In particular, the tested material is positioned between two plates, with one of them being excited by an electromagnetic shaker. Using a sine burst as an excitation signal, the accelerometric response in the time domain is measured at the top and bottom plates. The time of flight between the plates and the envelope function of time domain acceleration at the top plate are then found. A transfer matrix model of the experimental setup is used to inversely estimate the complex modulus of the materials once the remaining mechanical and physical properties have been fixed. The results will be presented and discussed for different materials and compared with well-established quasi-static and dynamic techniques.  相似文献   

15.
HDPE is commonly used in pipelines and piping for industrial and societal infrastructure. Like most polymers, HDPE's mechanical properties are sensitive to temperature and show time dependent properties. The temperature effect on both the short and long term compressive and tensile behavior of HDPE, in a combined manner, have not been investigated thoroughly in the past. Especially the constitutive behavior of HDPE, incorporating temperature effects on its long and short term behavior, could be essential when designing such infrastructural components. Hence, the temperature effect on the short and long term response in tension and compression of HDPE is investigated in this study. The short term tensile and compressive stress-strain behavior at 23, 40, 60, and 80 °C were obtained through experiments at constant displacement rate and temperature. Tensile and compressive stress relaxation (e.g. long term) behavior at 23, 40, 50, 60, 70, and 80 °C were investigated through stress relaxation tests. The experimental results from the short term tests showed that both the tensile and compression moduli and yield strength of HDPE decrease linearly with the increase in temperature. It is also shown from the long term test that relaxation modulus in tension and compression are highly dependent on temperature. Based on the experimental results, the constitutive three network model (TNM) was calibrated and implemented in a FEA model, which was then validated through a three point bending (3 PB) relaxation test with a prescribed temperature profile. The FEA model and the calibrated model results agree markedly well with the experimental results, which indicates that the model can be used reliably to predict the temperature dependent short and long term behavior of HDPE in design and analysis of HDPE components.  相似文献   

16.
Monolayers of surface active molecules or particles play an important role in biological systems as well as in consumer products. Their properties are controlled by thermodynamics as well as the mechanical properties of the interface itself. For insoluble species forming Langmuir monolayers, surface pressure-area isotherms are typically used to characterize the thermodynamic state. A Langmuir trough equipped with a Wilhelmy plate is often used for such measurements. However, when Langmuir interfaces are compressed and become more structured, the elastic response of these interfaces can interfere with the measurement of the surface pressure-area isotherm, even when the compression speed is slow. Recent reports of compression data for highly elastic interfaces revealed a dependence of the apparent surface pressures on the geometry of the measurement trough. In the present work, this dependence is investigated by considering adequate constitutive models. Since deformations in such compression experiments can be large, linearized versions of the Kelvin–Voigt model do not suffice. We develop a framework for quasi-linear constitutive models by choosing suitable non-linear strain tensors, adequately separating the shear and dilatational effects in a frame invariant manner. The proposed constitutive models can be used as building blocks to describe viscoelastic behavior as well. The geometry dependence in isotherm measurements is then shown to be a consequence of varying contributions of the isotropic surface pressure and extra shear and dilatational elastic stresses. Using these insights, an approach is proposed to obtain the intrinsic surface pressure-area isotherms for elastic interfaces. As a case study, experimental data on graphene oxidesheets at the air–water interface is investigated to evaluate the proposed model.  相似文献   

17.
Quasi-static shear–compression tests were conducted on polymethyl methacrylate (PMMA) polymer specimens using a universal materials testing machine to investigate their failure behaviour under quasi-static multi-axial loading. Instead of using confining pressure, cylindrical specimens with bevelled ends of different angles (5°, 10°, 15°, 20°, 25° and 30°) were used to generate different shear stresses. In addition, a cylindrical specimen with no bevelled ends and a hat specimen of PMMA were applied in the quasi-static shear–compression tests to determine the compression and shear strengths of PMMA, respectively. Experimental results show that the failure force of PMMA decreased as the tilt angle of the specimen increased. Furthermore, the failure locus of the material can be predicted using a macroscopic failure criterion with an elliptical shape. The deformation modes of each type of PMMA specimen under quasi-static loading were determined.  相似文献   

18.
Elastomers are widely used for damping components in various industrial contexts because of their remarkable dissipative properties: they can bear severe mechanical loading conditions, i.e., high strain rates and large strains. Depending on the strain rate, the mechanical response of these materials can vary from purely rubber-like to glassy. In the intermediate strain rate range (1-100/s), uniaxial extension experiments are classically conducted at constant nominal strain rate. We present here a new experimental methodology to investigate the mechanical response of soft materials at constant true strain rate in the intermediate strain rate range. For this purpose, the displacement imposed on the specimen by the tensile machine is an exponential function of time. A high speed servo-hydraulic machine is used to perform experiments at strain rates ranging from 0.01 to 100/s. A specific specimen is designed in order to achieve a uniform strain field (and thus a uniform stress field). Furthermore, an instrumented aluminium bar is used to measure the applied force; which overcomes the difficulties due to dynamic effects. Simultaneously, a high speed camera enables the measurement of strain in the sample using a point tracking technique. Finally, the method is applied to determine the stress-strain curve of an elastomer for both loading and unloading responses up to a stretch ratio λ = 2.5; the influence of the true strain rate on both stiffness and dissipation of the material is then discussed.  相似文献   

19.
The engineering geological problems of soft rock are common in large slope engineering and underground engineering surrounding rock. In order to study the change in mechanical properties of soft rock under the action of loading, excavation and rainfall, this paper carried out experimental research on similar materials of soft rock. The similar material of soft rock is prepared by using iron fine powder, barite powder and quartz sand as aggregate, gypsum as binder and redispersible latex powder as regulator. A single-factor influence test was designed with the content of redispersible latex powder as variation parameter. Analysis the influence of redispersible latex powder from the perspectives of physical and mechanical indexes, failure forms, stress–strain states and changes after water seepage. In addition, evaluate the feasibility of this similar material in geomechanical model test. Experimental results show that the density, compressive strength and Poisson’s ratio of similar materials can be improved to a certain extent by the redispersible latex powder with low dosage. However, the above indexes show a significant downward trend with the increase in dosage when the dosage exceeds 2%. The deformation modulus always shows a downward trend, and this trend becomes more significant especially when the dosage exceeds 2%. With the increase in the redispersible latex powder, the stress–strain curves of similar materials show obvious elastic and plastic stages. The failure mode gradually changes to X-shaped conjugate failure, which is common in soft rock, and the material changes from brittle failure to plastic failure. In addition, this type of similar material with gypsum as cementing agent will cause serious damage and loss of bearing capacity after seepage. These methods produce similar materials with low strength, low deformation modulus and plastic failure form, which can be used to simulate the stability of soft rock engineering caused by loading or excavation. At the same time, it also sheds lights on preparing similar materials of hard rock.  相似文献   

20.
Membrane materials with the excellent thermal, optical, electrical and chemical properties have attracted significant attention in numerous research fields recently. However, while being used to construct the membrane structures, the mechanical behaviors of membrane materials are more foundational than the other properties in evaluating the structure safety. This paper thus proposes a nonlinear stress-strain constitutive model for revealing the viscoelastic behaviors of membrane materials under uniaxial tensile loading. To this end, the constitutive equations for expressing the uniaxial tensile stress-strain relationships of viscoelastic materials are established gradually from the kinematic equations of the generalized Maxwell model that includes several basic Maxwell models and one basic spring element. Meanwhile, the uniaxial tensile tests of two typical viscoelastic membrane materials were carried out in order to examine the proposed constitutive model. The constitutive model parameters of the stress-strain properties of both membrane materials are accurately identified using the least square method. By comparing the true stress-strain curves between experimental results and constitutive models, good agreements with the maximum differences of 4.67% and 3.41% are acquired for the two employed viscoelastic membrane materials, respectively. These observations are able to validate the accuracy and efficiency of this proposed constitutive model in predicting the uniaxial stress-strain behaviors of viscoelastic membrane materials, which are significant in the nonlinear structural analysis of membrane structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号