首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of unidirectional (UD) and woven fabric glass/epoxy composites under off-axis tensile loading were experimentally investigated. A number of off-axis tests considering different fibre orientations were performed to study the character and failure mechanisms of the composite laminates. The experimental results indicated that both off-axis elastic moduli and strength degrade with increasing off-axis angle in all cases, and the woven fabric composites present nonlinear stress-strain behaviour under off-axial tension loading. The Tsai-Wu criteria used for failure analysis of the UD and woven fabric composites were compared and discussed, especially considering different values of interaction coefficient F12. The prediction results demonstrated that the Tsai-Wu criterion can be used successfully to analyse failure properties of the woven fabric composites under multiaxial stress conditions, where the criterion with the modified coefficient F12 obtained from the 45° off-axial tension tests is better and has higher accuracy. Finally, the specific failure modes were compared in the UD and woven fabric composites. The selected fracture surfaces were also observed by scanning electron microscopy (SEM), and the corresponding failure mechanisms of the woven fabric composites under off-axis tensile loading were identified.  相似文献   

2.
In the present study, the interfacial behavior of overmolded hybrid fiber reinforced polypropylene composites (hybrid composites) in the working temperature range from 23 °C to 90 °C was studied by experimental and constitutive methods. Monotonic and cycle loading-unloading single-lap-shear tests were employed to determine the interfacial properties of hybrid composites. The experimental results show that both interfacial shear strength and shear stiffness decrease with increasing working temperature. A regression function was adopted to evaluate the decaying degree of interfacial properties with increasing working temperature. The shear stress-displacement relationship under monotonic loading exhibits nonlinear behavior after an initial elastic region. The envelope lines of shear stress-displacement of hybrid composites under cyclic loading indicate that the nonlinearity in the curve is caused by the plastic deformation of polypropylene in the interphase region. A constitutive model was built to describe the nonlinear shear stress-displacement relation of hybrid composites at different working temperatures. A full suite of temperature-dependent plastic parameters in the model was obtained from cyclic loading-unloading tensile tests. The predicted shear stress–displacement curves agreed well with experimental results from different working temperatures. In addition, the failure mode of hybrid composites varied with working temperature.  相似文献   

3.
This work concerns notched composite plates repaired with external circular patches. Their load carrying capability and failure process under tensile loading were investigated experimentally. In the case of a strong adhesive joint, the stiffness of the patches has to be optimized to release high stress concentration and obtain the best repair performance. It was found that the damage progression of the repairs depends not only on the patch stiffness but also on the stacking sequence. With visual inspection and acoustic emission, three modes of damage and failure process for patch repaired specimens were identified. Theses damage models are essential for the development of a numerical design tool for the optimization of external patch repairs.  相似文献   

4.
In this paper, combined moisture/ultraviolet (UV) weathering performance of unbleached and bleached Kraft wood fibre reinforced polypropylene (PP) composites was studied. Composites containing 40 wt% fibre with 3 wt% of a maleated polypropylene (MAPP) coupling agent were fabricated using extrusion followed by injection moulding. Composite mechanical properties were evaluated, before and after accelerated weathering for 1000 h, by tensile and impact testing. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also carried out to assess the changes occurring during accelerated weathering. Bleached fibre composites initially showed higher tensile and impact strengths, as well as higher thermal stability and greater crystallinity. During accelerated weathering, both unbleached and bleached fibre composites reduced tensile strength (TS) and Young's modulus (YM), with the extent of the reduction found to be similar for both unbleached and bleached fibre composites. Evidence supported that the reduction of TS and YM was due to PP chain scission, degradation of lignin and reduced fibre-matrix interfacial bonding.  相似文献   

5.
The applicability of different strain measurement techniques for carbon/epoxy laminates under quasi-static tensile and tension-tension fatigue loads was studied. Strain gauges, mechanical extensometers, digital image correlation and 2 D camera systems were applied on laminates tested at angles of 0°, 45°, 60°, 90° and ±45°. In addition, displacements recorded by the servo-hydraulic piston were monitored and compared to local strain measurement techniques. Representative examples that illustrate characteristics and limits of each technique in quasi-static and fatigue tests are discussed. Influences of the respective method of strain measurement, the specimen surface, fibre direction and processes in the specimens during tests on the recorded stress-strain behaviour and on the calculated stiffness are presented. Recommendations for accurate strain measurement of anisotropic laminates based on the results are made.  相似文献   

6.
Carbon fabric (CF) was surface treated with silane-coupling agent modification, HNO3 oxidation, combined surface treatment, respectively. The friction and wear properties of the carbon fabric reinforced phenolic composites (CFP), sliding against GCr15 steel rings, were investigated on an M-2000 model ring-on-block test rig. Experimental results revealed that combined surface treatment largely reduced the friction and wear of the CFP composites. Scanning electron microscope (SEM) investigation of the worn surfaces of the CFP composites showed that combined surface modified CFP composite had the strongest interfacial adhesion and the smoothest worn surface under given load and sliding rate. SEM and X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after combined surface treatment, which improved the adhesion between the fiber and the phenolic resin matrix and hence to improve the friction-reduction and anti-wear properties of the CFP composite.  相似文献   

7.
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.  相似文献   

8.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The primary focus of the present work was to fabricate and characterize hybrid epoxy composites using jute and murta bast fibers. Murta and jute fibers with lengths of 35 mm each were mixed randomly with a polymer matrix by varying their relative amounts but keeping the total weight of the fiber mixture fixed at 30%. The hybrid composites were characterized based on values obtained from the experiments carried out to assess properties such as density, thermal stability, water absorption/retention, tensile/flexural/compressive/impact strengths, and hardness. The composite containing equal amounts of the two fibers exhibits synergism and superior properties.  相似文献   

10.
李武 《高分子科学》2017,35(5):659-671
Polypropylene(PP) composites containing magnesium oxysulfate whisker(MOSw) or lauric acid(LA) modified MOSw(LAMOSw) were prepared via melt mixing in a torque rheometer. The heterogeneous nucleating effect of LAMOSw was clearly observed in polarized light microscopy(PLM) pictures with the presence of an abundance of small spherulites. MOSw exhibited no nucleation effect and formed a few spherulites with large size. Compared with PP/MOSw composites, PP/LAMOSw exhibited better impact strength, tensile strength and nominal strain at break, ascribing to three possible reasons:(i) more β-crystal PP formed,(ii) better dispersity of LAMOSw in PP matrix and(iii) the plasticizing effect of LA. The results of dynamic mechanical thermal analysis(DMTA) indicated that brittleness of the PP matrix at low temperature was improved by the addition of LAMOSw, while the interfacial interactions between MOSw and PP matrix were actually weakened by LA, as evidenced by the higher tanδ values over the entire range of test temperatures. In terms of the rheological properties of the composites, both the η* and G′ at low frequencies increase with the addition of MOSw or LAMOSw, indicating that the PP matrix was transformed from liquid-like to solid-like. However, a network of whiskers did not form because no plateau was found in the G′ at low frequencies. With low filler content, LAMOSw produced a stronger solid-like behavior than MOSw mainly due to the better dispersion of the LAMOSw in PP matrix. However, for highly-filled composites, the η* of PP/LAMOSw at low frequencies was smaller than that of PP/MOSw composite, since the particleparticle contact effect played a major role.  相似文献   

11.
Basalt fibers, similarly to other silicate fibers, can be introduced into both thermoplastic and thermosetting polymer matrices. In this work some basalt fiber reinforced polypropylene composites were investigated. The fiber-matrix adhesion was improved by commercial and non-commercial maleic anhydride derivatives. The latter types, called reactive surfactants, were prepared in laboratory scale and the progress of the syntheses was determined by Raman microscopy. The additives allowed performing reactive interface modification during the compounding process. Due to the interface modification with the additives in low concentration the mechanical properties improved. The boundary layers on the surface of the reinforcing fibers were observed using scanning electron microscopy (SEM).  相似文献   

12.
《European Polymer Journal》2003,39(1):157-163
The subject of this work is the thermal behaviour of polypropylene/talc composites whose interface has been modified by atactic polypropylenes containing different numbers of succinyl fluorescein grafted groups. The interface modifiers used here were previously obtained in our laboratories by a two-step chemical modification of the melt of a by-product (atactic polypropylene) of industrial polymerisation reactors. The variations in interface activity caused by replacing a small amount of the polypropylene matrix in the composite by succinyl fluorescein grafted atactic polypropylene were clearly detected by differential scanning calorimetry as thermal responses. These studies show that interface agents are preferably located in the amorphous phase of the system. A correlation between the crystalline content of the polymer component and the degree of grafting of the interface agent is also established. Further, a relationship between the thermal behaviour and the mechanical properties of the system seems to emerge.  相似文献   

13.
This study investigated the dynamic mechanical properties of hybrid intraply carbon/E-glass epoxy composites with different orientations and stacking sequences under different loading conditions with increasing temperature. A neat epoxy and five various hybrid composites such as Carbon (0°)/E-glass (90°), Carbon (45°)/E-glass (135°), Carbon (90°)/E-glass (0°), Carbon/E-glass (alternating layer), and Carbon/E-glass (alternating layer 45°) were manufactured. Three-point bending test and dynamic mechanical test were conducted to understand the flexural modulus and viscoelastic behavior (storage modulus, loss modulus, and loss tangent) of the composites. Dynamic mechanical test was performed with the dual cantilever method, at four different frequencies (1, 5, 10, and 20 Hz) and temperatures ranging from 30 to 150°C. The experimental results of storage modulus, loss modulus, and loss tangents were compared with the theoretical findings of neat epoxy and various hybrid composites. The glass transition temperature (Tg) increased with the increase in frequency. A linear fit of the natural log of frequency to the inverse of absolute temperature was plotted in the activation energy estimation. The interphase damping (tanδi) between plies and the strength indicator (Si) of the hybrid composites were estimated. It was observed that the neat epoxy had more insufficient storage and loss modulus and a high loss tangent at all the frequencies whereas hybrid composites had high storage and loss modulus and a low loss tangent for all the frequencies. Compared with other hybrid composites, Carbon (90°)/E-glass (0°) had higher strength and activation energy. The result of reinforcement of hybrid fiber in neat epoxy significantly increases the material's strength and stability at higher temperatures whereas decreasing free molecular movement.  相似文献   

14.
Injection-molded, short-glass-fiber-reinforced high-impact polystyrene was investigated under uniaxial tension with special attention to the effects of fiber and rubber concentration on fracture behavior. According to a fracture morphology study performed by polarized optical and scanning electron microscopy, crazes were consecutively initiated from rubber-styrene composite particles and from fiber ends. The rubber particles exhibited an intra-particle failure mode which resulted from the failure manner of the matrix becoming of a more brittle character with increasing fiber fraction. Fibers were surrounded by neigh boring growing crazes. Failure at the fiber-matrix interfaces proceeded with an increase in the number of crazes. With increasing concentration of the fibers, crazing at rubber particles appeared to be suppressed and crazing occurred more preferentially at the fiber ends, which accelerated a macroscopic fracture.Dedicated to Prof. H. H. Kausch on the occasion of his 60th birthday.  相似文献   

15.
In the present work, dynamic compression response of polypropylene (PP) based composites reinforced with Kevlar/Basalt fabrics was investigated. Two homogeneous fabrics with Kevlar (K3D) and Basalt (B3D) yarns and one hybrid (H3D) fabric with a combination of Kevlar/Basalt yarns were produced. The architecture of the fabrics was three-dimensional angle-interlock (3D-A). Three different composite laminates were manufactured using vacuum-assisted compression molding technique. The high strain rate compression loading was applied using a Split-Hopkinson Pressure Bar (SHPB) set-up at a strain rate regime of 3633–5235/s. The results indicated that the dynamic compression properties of thermoplastic 3D-A composites are strain rate sensitive. In all the composites, the peak stress, toughness and modulus were increased with strain rate. However, the strain at peak stress of Basalt reinforced composites (B3D, H3D) decreased approximately by 25%, while for K3D specimens it increased approximately by 15%. The K3D composites had a higher strain rate as compared to the B3D and H3D composites. In the case of K3D composite, except strain at peak stress, remaining dynamic properties were lower than the B3D composite, however, hybridization increased these properties. The failure mechanisms of 3D-A composites were characterized through macroscopic and scanning electron microscopy (SEM).  相似文献   

16.
The toughening mechanisms of polypropylene filled with elastomer and calcium carbonate (CaCO3) particles were studied. Polypropylene/elastomer/CaCO3 composites were prepared on a twin‐screw extruder with a particle concentration of 0–32 vol %. The experiments included tensile tests, notched Izod impact tests, scanning electron microscopy, and dynamic mechanical analysis. Scanning electron microscopy showed that the elastomer and CaCO3 particles dispersed separately in the matrix. The modulus of the composites increased, whereas the yield stress decreased with the filler concentration. The impact resistance showed a large improvement with the CaCO3 concentration. At the same composition (80/10/10 w/w/w), three types of CaCO3 particles with average diameters of 0.05, 0.6, and 1.0 μm improved the impact fracture energies comparatively. The encapsulation structure of the filler by the grafting elastomer had a detrimental effect on the impact properties because of the strong adhesion between the elastomer and filler and the increasing ligament thickness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1113–1123, 2005  相似文献   

17.
18.
Both linear and nonlinear viscoelastic properties of ionic polymer composites reinforced by soy protein isolate (SPI) were studied. Viscoelastic properties were related to the aggregate structure of fillers. The aggregate structure of SPI is consisted of submicron size of globule protein particles that form an open aggregate structure. SPI and carbon black (CB) aggregates characterized by scanning electron microscope and particle size analyzer indicate that CB aggregates have a smaller primary particle and aggregate size than SPI aggregates, but the SPI composites have a slightly greater elastic modulus in the linear viscoelastic region than the CB composites. The composite containing 3–40 wt % of SPI has a transition in the shear elastic modulus between 6 and 8 vol % filler, indicating a percolation threshold. CB composites also showed a modulus transition at <6 vol %. The change of fractional free volume with filler concentration as estimated from WLF fit of frequency shift factor also supports the existence of a percolation threshold. Nonlinear viscoelastic properties of filler, matrix, and composites suggested that the filler‐immobilized rubber network generated a G′ maximum in the modulus‐strain curves and the SPI formed a stronger filler network than the CB in these composites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3503–3518, 2005  相似文献   

19.
The kinetics of nonisothermal melting and the crystallization of polypropylene (PP) in polypropylene/carbon‐fiber (C/PP) composites were studied by differential scanning calorimetry with the Nedkov and Atanasov method. Characteristic parameters such as the lamellar thickness, the transport energy through the phase boundary, and the surface free energy were determined and analyzed. In nonisothermal melting, the nucleation effect of carbon fibers was confirmed by decreasing transport energy (79 and 41 kJ/mol for PP and C/PP, respectively) and surface free energy (8 × 10?4 and 7.9 × 10?5 J/m2 for PP and C/PP, respectively). Depending on the carbon‐fiber content, the lamellar thickness changed from 6.7 × 10?9 m to 9.05 × 10?9 m. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 66–73, 2005  相似文献   

20.
To produce natural polymer based composite materials, sisal fibers were slightly benzylated and then molded into sheets. Because the modified skin portions of the fibers acquired certain thermoplasticity and the unmodified core parts remain constant, the resultant composites fall into the category of self‐reinforced ones. The present article is devoted to the evaluation of the materials biodegradability with the help of cellulase. It was found that the inherent biodegradability of plant fibers is still associated with the benzylated sisal and the molded composites, as characterized by structural variation, weight loss and deterioration of mechanical performance of the materials. Reaction temperature and time, pH value of the enzyme solution, and dosage of the enzyme had significant influences on the decomposition behavior of the materials. In principle, the enzymolysis of sisal and its self‐reinforced composites is a diffusion‐controlled process. Due to the insusceptibility of lignin to cellulase and the hindrance of it to the cellulase solution, the degradation rates of the materials are gradually slowed down with an increase in time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号