首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2020,31(8):2041-2044
Acetone is an important industrial raw material as well as biomarker in medical diagnosis. The detection of acetone has great significance for safety and health. However, high selectivity and low concentration (ppb level) detection remain challenges for semiconductor gas sensor. Herein, we present a novel sensitive material with bimetallic PtCu nanocrystal modified on WO3·H2O hollow spheres (HS), which shows high sensitivity, excellent selectivity, fast response/recovery speed and low limit of detection (LOD) to acetone detection. Noteworthy, the response (Ra/Rg) of WO3·H2O HS sensor increased by 9.5 times after modification with 0.02% bimetallic PtCu nanocrystals. The response of PtCu/WO3·H2O HS to 50 ppm acetone is as high as 204.9 with short response/recovery times (3.4 s/7.5 s). Finally, the gas-sensitivity mechanism was discussed based on gas sensitivity test results. This research will offer a new route for high efficient acetone detection.  相似文献   

2.
《Electroanalysis》2017,29(2):345-351
A glassy carbon electrode modified with reduced graphene oxide and platinum nanocomposite film was developed simply by electrochemical method for the sensitive and selective detection of nitrite in water. The electrochemical reduction of graphene oxide (GO) efficiently eliminates oxygen‐containing functional groups. Pt nanoparticles were electrochemically and homogeneously deposited on the ErGO surface. Field emission scanning electron microscopy (FE‐SEM), Raman spectroscopy, attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were used to examine the surface morphology and electrocatalytic properties of the Pt‐ErGO nanocomposite film‐modified electrode surface. The fabricated nitrite sensor showed good electrochemical performance with two linear ranges; one from 5 to 100 µM (R2=0.9995) and the other from 100 to 1000 µM (R2=0.9972) and a detection limit of 0.22 µM. The proposed sensor was successfully applied for the detection of nitrite in tap water samples which proves performance of the Pt‐ErGO nanocomposite films.  相似文献   

3.
《Electroanalysis》2018,30(8):1610-1615
Nitric oxide (NO) levels in exhaled breath are a non‐invasive marker that can be used to diagnose various respiratory diseases and monitor a patient's response to given therapies. A portable and inexpensive device that can enable selective NO concentration measurements in exhaled breath samples is needed. Herein, the performance of an amperometric Pt‐Nafion‐based gas phase sensor for detection of NO in exhaled human nasal breath is examined. Enhanced selectivity over carbon monoxide and ammonia is achieved via an in‐line zinc oxide‐based filter. Exhaled nasal NO levels measured in 21 human samples with the sensor are shown to correlate well with those obtained using a chemiluminescence reference method (R2=0.9836).  相似文献   

4.
A novel nanocomposite of molecularly imprinted polymers and graphene sheets was fabricated and used to obtain a highly conductive acetylene black paste electrode with high conductivity for the detection of bisphenol A. The two‐dimensional structure and the chemical functionality of graphene provide an excellent surface for the enhancement of the sensitivity of the electrochemical sensor and the specificity of molecularly imprinted polymers to improve detection of bisphenol A. The synergistic effect between graphene and molecularly imprinted polymers confers the nanocomposite with superior conductivity, broadened effective surface area and outstanding electrochemical performance. Factors affecting the performance of the imprinted sensor such as molecularly imprinted polymers concentration, foster time and scan rate are discussed. The sensor successfully detects bisphenol A with a wide linear range of 3.21 × 10?10 to 2.8 × 10?1 g/L (R = 0.995) and a detection limit of 9.63 × 10?11g/L. The fabricated sensor also possessed high selectivity and stability and exhibits potential for environmental detection of contaminants and food safety inspection.  相似文献   

5.
A facile approach of polypyrrole (PPy)/tungsten oxide (WO3) composites electrosynthesized in ionic liquids for fabrication of electrochromic devices is discussed. The electrochromic properties of PPy/tungsten oxide nanocomposite films (PPy/WO3) prepared in the presence of four different ionic liquids, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6), 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI), and 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI) were investigated in detail. Cyclic voltammetry results revealed that PPy/WO3 nanocomposite films have much more electrochemical activity than those of WO3 and PPy film. The electrochromic contrast, coloration efficiency, and switching speed of the composite films were determined for electrochromic characteristics. The maximum contrast and the maximum coloration efficiency values were measured as 33.25% and 227.89 cm2/C for the PPy/WO3/BMIMTFSI composite film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, polypyrrole/graphene (PPy/G) composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless steel (SS) tube. Based on the coating tube, a novel online in-tube solid-phase microextraction -high performance liquid chromatography (IT-SPME-HPLC) was developed and applied for the extraction of aldehydes in the human exhaled breath condensates (EBC). The hybrid PPy/G nanocomposite exhibits remarkable chemical and mechanical stability, high selectivity, and satisfactory extraction performance toward aldehyde compounds. Moreover, the proposed online IT-SPME-HPLC method possesses numerous superiorities, such as time and cost saving, process simplicity, high precision and sensitivity. Some parameters related to extraction efficiency were optimized systematically. Under the optimal conditions, the recoveries of the aldehyde compounds at three spiked concentration levels varied in the range of 85%–117%. Good linearity was obtained with excellent correlation coefficients (R2) being larger than 0.994. The relative standard deviations (n = 5) of the method ranged from 1.8% to 11.3% and the limits of detection were between 2.3 and 3.3 nmol L−1. The successful application of the proposed method in human EBC indicated that it is a promising approach for the determination of trace aldehyde metabolites in complex EBC samples.  相似文献   

7.
Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.  相似文献   

8.
Su PG  Ren-Jang W  Fang-Pei N 《Talanta》2003,59(4):667-672
The thick film semiconductor sensor for NO2 gas detection was fabricated by screen-printing method using a mixed WO3-based as sensing material. The sensing characteristics, such as response time, response linearity, sensitivity, working range, cross sensitivity, and long-term stability were further studied by using a WO3-based mixed with different metal oxides (SnO2, TiO2 and In2O3) and doped with noble metals (Au, Pd and Pt) as sensing materials was observed. The highest sensitivity for low concentrations (<16 mg l−1) was observed using WO3-based mixed with In2O3 or TiO2. The NO2 gas sensor showing the fastest response and recovery time (both within 2 min), good linearity (Y=0.606X+0.788 R2=0.991) for gas concentrations from 3 to 310 mg l−1, low resistance (3 MΩ), high sensitivity, undesirable cross sensitivity effect and good long-term stability (at least 120 days) using WO3-SnO2-Au as sensing material.  相似文献   

9.
An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10 μg mL−1 (R2 = 0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04 μg mL−1 (n = 3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL−1 of naproxen was 3% (n = 5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.  相似文献   

10.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

11.
Development of nanocomposite based electrochemical sensors for detection of toxic chemicals describes an environmentally benign strategy for monitoring the health of ecosystem. Herein, we reported in situ preparation of graphitic carbon nitride (g-C3N4) decorated Ag2S/NiFe2O4 nanocomposite sensor by facile precipitation method. The electrochemical studies demonstrated efficient electrocatalytic activity of ternary nanocomposite pasted glassy carbon electrode (g-C3N4@Ag2S/NiFe2O4/GCE) for selective detection of formaldehyde. Moreover, fabricated sensor exhibit rapid amperometric response with excellent selectivity, remarkable sensitivity (1681 μA mmol L−1 cm−2) and lower detection limit (LOD: 1.63 μmol L−1). It is noteworthy to mention that sensor exhibits good operational and long-term storage stability.  相似文献   

12.
Seedless growth of vertically aligned nanostructures, which can induce smoother transport and minimize Ohmic contact between substrate and semiconductor, can be fabricated by in situ growth utilizing modified hydrothermal methods. Such devices can be useful in designing non‐invasive ultrasensitive hand‐held sensors for diagnostic identification of volatile organic compounds (VOCs) in exhaled air, offering pain‐free and easier detection of long‐term diseases such as asthma. In the present work, WO3 nanoblocks, with a high surface area and porosity, have been grown directly over transparent conducting oxide to minimize Ohmic resistance, facilitating smoother electron transfer and enhanced current response. Further modification with porous alumina (γ‐Al2O3), by electrodeposition, resulted in the selective and ultrasensitive detection of NOX in simulated exhaled air. Crystal phase purity of as‐fabricated pristine as well modified samples is validated with X‐ray diffraction analysis. Morphological and microstructural analyses reveal the successful deposition of porous alumina over the surface of WO3. Improved surface area and porosity is presented by porous alumina in the modified WO3 device, suggesting more active sites for the gas molecules to get adsorbed and diffuse through the pores. Oxygen vacancies, which are detrimental in the transport phenomenon in the presented sensors, have been studied using X‐ray photoelectron spectroscopic (XPS) analysis. Gas sensing studies have been performed by fabricating chemiresistor devices based on bare WO3 and Al2O3‐modified WO3. The higher sensitivity for NOX gas in case of γ‐Al2O3‐modified WO3 based devices, as compared to bare WO3‐based devices, is attributed to the better surface area and charge transport kinetics. The presented device strategy offers crucial understanding in the design and development of non‐invasive, hand‐held devices for NO gas present in the human breath, with potential application in medical diagnostics.  相似文献   

13.
Pristine and WO3 decorated TiO2 nanorods (NRs) were synthesised to investigate n-n-type heterojunction gas sensing properties. TiO2 NRs were fabricated via hydrothermal method on fluorine-doped tin oxide coated glass (FTO) substrates. Then, tungsten was sputtered on the TiO2 NRs and thermally oxidised to obtain WO3 nanoparticles. The heterostructure was characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Fabricated sensor devices were exposed to VOCs such as toluene, xylene, acetone and ethanol, and humidity at different operation temperatures. Experimental results demonstrated that the heterostructure has better sensor response toward ethanol at 200 °C. Enhanced sensing properties are attributed to the heterojunction formation by decorating TiO2 NRs with WO3.  相似文献   

14.
Functionalized‐multiwall carbon nanotubes decorated with redox active copper nanoparticles have been fabricated for sensitive enzyme‐less H2O2 detection. The new nanocomposite was characterized by Transmission electron microscopy, energy dispersive X‐ray analysis and cyclic voltammetry. The response of the modified electrode to H2O2 was examined using amperometry at ?0.45 V vs. Ag/AgCl in a buffer solution at pH 10.0. The developed sensor displayed linear concentration ranges of 0.5–10.0 and 10.0–10000.0 µmol L?1 with a detection limit of 0.3 µmol L?1. The proposed sensor displayed good selectivity for H2O2 detection in the presence of common interferences such as ascorbic acid.  相似文献   

15.
TiO2/polypyrrole (PPy) nanocomposite ultrathin films for NH3 gas detection were fabricated by the in situ self-assembly technique. The films were characterized by UV–Vis absorption, FT–IR spectroscopy, and atomic force microscopy (AFM). The electrical properties of TiO2/PPy ultrathin film NH3 gas sensors, such as sensitivity, selectivity, reproducibility, and stability were investigated at room temperature in air as well as in N2. The results showed that the optimum gas-sensing characteristics of TiO2/PPy ultrathin film were obtained in the presence of 0.1?wt% colloidal TiO2 for 20-min deposition. Compared with pure PPy thin-film sensors, the TiO2/PPy film gas sensor has a shorter response/recovery time. It was also found that both humidity and temperature had an effect on the operation of the TiO2/PPy film gas sensor at low NH3 concentrations.  相似文献   

16.
In this communication, a novel solid-state pH sensor based on WO3/MWNTs nanocomposite electrode will be reported. WO3 nanoparticles were homogeneously coated on vertically aligned MWNTs by magnetron sputtering. Potentiometric pH response of the WO3/MWNTs electrode in Britton–Robinson buffers revealed a linear working range from pH 2 to12 with a slope of about ?41 mV pH?1 and a response time less than 90 s. The stability of the electrode remained over a month. Moreover, the WO3/MWNTs electrode displayed excellent anti-interference property. Compared to conventional pH sensors, the pH sensor based on WO3/MWNTs nanocomposite electrode also showed excellent reproducibility, high stability and superb selectivity.  相似文献   

17.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   

18.
Nickel oxide nanoparticle (NiO?NP) and polypyrrole (PPy) composite were deposited on a Pt electrode for fabrication of a urea biosensor. To develop the sensor, a thin film of PPy?NiO composite was deposited on a Pt substrate that serves as a matrix for the immobilization of enzyme. Urease was immobilized on the surface of Pt/PPy?NiO by a physical adsorption. The response of the fabricated electrode (Pt/PPy?NiO/Urs) towards urea was analyzed by chronoamperometry and cyclic voltammetry (CV) techniques. Electrochemical response of the bio‐electrode was significantly enhanced. This is due to electron transfer between Ni2+ and Ni3+ as the electro‐catalytic group and the reaction between polypyrrole and the urease‐liberated ammonium. The fabricated electrode showed reliable and demonstrated perfectly linear response (0.7–26.7 mM of urea concentration, R2= 0.993), with high sensitivity (0.153 mA mM?1 cm?2), low detection of limit (1.6 μM), long stability (10 weeks), and low response time (~5 s). The developed biosensor was highly selective and obtained data were repeatable and reproduced using PPy‐NiO composite loaded with immobilized urease as urea biosensors.  相似文献   

19.
A simpe electrochemical sensor for detection of cholic acid (CA) was designed by modifying phosphomolybdate (PMo12) doped polypyrrole (PPy) film on glassy carbon electrode (PMo12‐PPy/GCE). The electrochemical behavior of CA on PMo12‐PPy/GCE was investigated by cyclic voltammetry and 0.5 order differential voltammetry. The results indicated that CA had high inhibitory activity toward the peak currents of PMo12‐PPy/GCE. The reduction peak currents were linearly related to the logarithmic value of the concentration of CA from 1.0×10?7 to 1.0×10?3 mol/L with a low detection limit of 1.0×10?8 mol/L. The developed sensor exhibited excellent sensitivity, selectivity and stability for detection of CA, and it could be successfully applied to detect the level of CA in the urine samples. Moreover, the response mechanism of CA on the PMo12‐PPy/GCE was discussed in detail.  相似文献   

20.
In this work, a modified 3D-rGO/MWCNT with nickel and copper oxide nanoparticles were synthesized. The structural properties of this nanocomposite were investigated by several techniques. The fabricated sensor at optimum condition potential of +0.60 V (vs. Ag/AgCl) and a rotational rate of 1800 rpm gave a detection limit of 0.04 μmol L−1 with two dynamic ranges of 0.10–300 and 300–900 μmol L−1 glucose with high stability. The good accuracy of the fabricated sensor was proved in the determination of glucose in a blood sample (with recoveries between 95 % to 105 % and RSDs of 1.2 to 2.5 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号