首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work investigated the effects of non-ionic surfactant treatment on the dispersibility, surface chemistry and structure of carbon nanotube (CNT) particles. Subsequently, the fracture experiments of as-prepared epoxy/CNT@X nanocomposites were carried out under quasi-static and dynamic loading conditions. By simply introducing the steric repulsive force between CNT@X filler and epoxy matrix, improved mode-I critical-stress-intensity factor (KIc) and dynamic crack initiation toughness (KIid) of the epoxy/CNT@X nanocomposite were simultaneously obtained without compromising other desired physical properties, such as electrical properties and electro-thermal behavior. In the case of SHPB impact loading, high-speed imaging along with digital-image-correlation (DIC) technology was utilized to determine dynamic fracture parameters. The results showed a notable reinforcement for the epoxy/CNT@X nanocomposite category, producing maximum increase of ~79% and ~153% in KIc and KIid values relative to epoxy/CNT nanocomposite at such maximum content of 1.0 wt%, respectively. The most delayed crack initiation time (59.9–68.4 μs) and slowest crack-tip velocity (229 ± 28 m/s) were also observed in the epoxy/CNT@X_1.0 case. These results may be explained by improved dispersibility and interfacial adhesion after surfactant treatment.  相似文献   

2.
Utilization of TEMPO-oxidized celluloses in bio-based nanocomposites is reported for the first time. TEMPO-oxidized wood pulps (net carboxylate content 1.1 mmol/g cellulose) were fibrillated to varying degrees using a high intensity ultrasonic processor. The degree of fibrillation was controlled by varying sonication time from 1 to 20 min. The sonication products were then characterized independently and as fillers (5 wt% loading) in hydroxypropyl cellulose nanocomposite films. Nanofibril yields ranging from 11 to 98 wt% (on fiber weight basis) were obtained over the range of sonication times used. Suspension viscosities increased initially with sonication time, peaked with gel-like behavior at 10 min of sonication and then decreased with further sonication. The thermal degradation temperature of unfibrillated oxidized pulps was only minimally affected (6 °C decrease) by the fibrillation process. Dynamic mechanical analysis of the nanocomposites revealed strong fibril-matrix interactions as evidenced by remarkable storage modulus retention at high temperatures and a suppression of matrix glass transition at “high” (~5 wt%) nanofibril loadings. Creep properties likewise exhibited significant (order of magnitude) suppression of matrix flow at high temperatures. It was also believed, based on morphologies of freeze-fracture surfaces that the nanocomposites may be characterized by high fracture toughness. Direct fracture testing will however be necessary to verify this suspicion.  相似文献   

3.
Epoxy based polymer nano-composite was prepared by dispersing graphite nano-platelets (GNPs) using two different techniques: three-roll mill (3RM) and sonication combined with high speed shear mixing (Soni_hsm). The influence of addition of GNPs on the electrical and thermal conductivity, fracture toughness and storage modulus of the nano-composite was investigated. The GNP/epoxy prepared by 3RM technique showed a maximum electrical conductivity of 1.8 × 10−03 S/m for 1.0 wt% which is 3 orders of magnitude higher than those prepared by Soni_hsm. The percentage of increase in thermal conductivity was only 11% for 1.0 wt% and 14% for 2.0 wt% filler loading. Dynamic mechanical analysis results showed 16% increase in storage modulus for 0.5 wt%, although the Tg did not show any significant increase. Single edge notch bending (SENB) fracture toughens (KIC) measurements were carried out for different weight percentage of the filler content. The toughening effect of GNP was most significant at 1.0 wt% loading, where a 43% increase in KIC was observed. Among the two different dispersion techniques, 3RM process gives the optimum dispersion where both electrical and mechanical properties are better.  相似文献   

4.
《先进技术聚合物》2018,29(3):1182-1190
The attempt of this research was to examine the effect of multiwalled carbon nanotube (MWCNT)‐Valine as efficient fillers on the thermal, optical, and electrical behaviors of polystyrene (PS). To reduce aggregation and obtain uniform spreading of fillers into the PS, at first, MWCNTs' surfaces were modified by Valine amino acid. Then, different contents of MWCNT‐Valine (0.5, 1, and 2 wt%) were added to PS by ultrasonication processes. The field emission scanning electron microscopy and transmission electron microscopy results showed a uniform distribution of modified MWCNTs into the matrix. The thermal properties of nanocomposites were improved by increasing nanofiller content. In addition, embedding of MWCNT‐Valine into the PS matrix increased the electrical conductivity of nanocomposites in comparison with pure PS.  相似文献   

5.
The resiliency of advanced laminated nanocomposite materials to mitigate impact load is an essential characteristic for material selection and product design. This paper investigates the effect of nanofillers and its effect on the damage resistance performance of a newly developed woven Kevlar fabric. Three types of nanofillers were investigated: (1) Silicon carbide (SiC), (2) aluminum oxide (Al2O3), and (3) multiwalled carbon nanotube (MWCNT). The nanofillers were dispersed using shear mixing and sonication into the epoxy to reinforce Kevlar fabric. Moreover, the effect of the nanofiller's concentration on the damage resistance performance was analyzed. All specimens had 10 layers of Kevlar fabric (KM2plus) stacked with a 0° angle. To evaluate the damage resistance performance a drop-weight impact test was conducted using a maximum drop height of 100 cm. X-ray diffraction was used to evaluate the level of material damage caused by the impact load. The addition of nanofillers enhanced the flexural properties of the composite and as well as its resiliency towards impact loads. In particular, the 0.5 wt% MWCNT laminated Kevlar/epoxy composite possessed the highest impact damage resistance capacity. Furthermore, the damage evolution was not observed within the impact area and in the surrounding areas for specimens with 0.5 wt% MWCNT. Therefore, the results indicate that the optimal nanofiller content for Kevlar KM2plus/epoxy nanocomposites is 0.5 wt% MWCNTs.  相似文献   

6.
Thermal degradation behavior of multi-wall carbon nanotubes (MWCNTs)/ultra high molecular weight polyethylene (UHMWPE) nanocomposites, with different nanotubes contents (0.5, 1.5 and 3.5 wt%) prepared via in-situ polymerization technique have been investigated using thermal gravimetric analysis (TGA). TGA spectra revealed that these nanocomposites had enhanced thermal stability and no significant mass loss (<0.4 wt%) occurred up to 350°C. Thermal degradation of these UHMWPE/MWCNT nanocomposites was investigated in terms of parameters such as the onset temperature of degradation (T10), the decomposition temperature at 50% wt loss (T50), the degradation temperature of maximum rate of the weight loss (Tm), and the residual yields (WR) from TGA. The degradation activation energies (E) of virgin UHMWPE and its nanocomposites were estimated using the Friedman, the Ozawa, Flynn, and Wall (OFW), and the Kissinger's methods. Results indicated that the degradation activation energy for the virgin UHMWPE was 281.3 kJ/mol. The activation energy increased with increasing nanotube loading up to 1.5 wt% indicating that MWCNTs had a stabilizing effect on the degradation of the matrix. However, loadings of 3.5 wt% of nanotube or more could slightly decrease the activation energy. The decrease in the activation energy for degradation of nanocomposites with higher MWCNT concentrations might be attributed to the catalytic effects of nanotubes and polymerization catalyst residues. The “model fitting” method indicated a mechanism of n th-order auto-catalysis from the form of the conversion curves for UHMWPE/MWCNTs nanocomposites prepared via in-situ polymerization.  相似文献   

7.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

8.
This paper reports the results of thermogravimetric studies on: (a) Polyamide-6,6 (abbreviated henceforth as PA66) specimens which were modified by electron beam radiation in air, (b) organic-inorganic hybrid nanocomposite films of PA66/silica prepared by the sol-gel technique and (c) unmodified multi-walled carbon nanotube (abbreviated henceforth as MWCNT) reinforced PA66 films. The activation energies were determined using the Kissinger and the Flynn-Wall-Ozawa methods, which do not require knowledge of the reaction mechanism. The results showed that PA66 specimens which received an irradiation dose of 200 kGy in air had a higher thermal stability than both the neat PA66 and PA66 specimens which received a radiation dose of 500 kGy in air. The PA66/silica hybrid nanocomposites up to a silica loading of 1.5 wt% also showed higher thermal stability over neat PA66 films. At MWCNT loadings of 0.5-1.0 wt% the composite films exhibited higher activation energies than the neat PA66 film but at higher MWCNT loading the activation energy was lower than that obtained for the neat PA66 film.  相似文献   

9.
One-pot hydrothermal reduction of graphene oxide (GO) in N-methyl-2-pyrrolidone (NMP) suspension was performed, wherein GO surface were functionalized by free radicals generated from NMP molecules. The NMP functionalized reduced GO (NMPG) nanosheets were then incorporated into epoxy matrix to prepare epoxy composites. The significant improvement of 100 and 240% in fracture toughness (critical intensity factor, KIC) and fracture energy (critical strain energy release rate, GIC) achieved from single edge notched bending (SENB) test revealed the excellent toughening ability of NMPG. The improved compatibility and interfacial interaction between the epoxy matrix and NMPG yielded∼28, 19 and 51% improvement in tensile strength, Young's and storage modulus, respectively. Thermal stability of pure epoxy and its composites was determined at 5, 10 and 50% weight loss, which showed 30, 27.5 and 29 °C improvement with 0.2 wt% NMPG loading. The work provides a simple method to prepare graphene-based epoxy composites with improved performance.  相似文献   

10.
Nowadays, scientific and technological efforts are being carried out to diminish serious ecological problems caused by indiscriminate use of non-biocompostable polymers in the packaging industry. In this sense, novel biodegradable blends of different composition based on poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and tributyrin (TB) are developed and here proposed as an eco-friendly alternative. Materials are characterized by fracture experiments under quasi-static and biaxial impact loading. Fracture behavior is analyzed together with thermal, tensile and water permeation properties to evaluate their potential in-service performance. TB_PLA/PHB blends with 15 wt% TB exhibit better permeation and fracture toughness than currently used bio-based polymers, being in the range of polyethylene properties. Results highlight the potential of these new blends broadening the current application field of PLA.  相似文献   

11.
In this study, relatively large amounts of polypropylene (PP), ethylene‐propylene‐diene (EPDM), and multi‐walled carbon nanotube (MWCNT) were melt‐mixed with and without DCP. Dynamically vulcanized PP/EPDM (TPV)/MWCNT nanocomposites were prepared by two methods: the MWCNTs were added either before or after the dynamic vulcanization of the blends. The effects of composition, rotor speed, and dynamic vulcanization on their surface resistivity were investigated. The surface resistivity of uncross‐linked PP/EPDM/MWCNT nanocomposites increases with increasing the content of EPDM. At PP/EPDM (70/30 wt%) nanocomposite with 1.5 phr MWCNT, slightly lower surface resistivity is obtained by increasing the rotor speed during mixing. However, for PP/EPDM (50/50 wt%) and PP/EPDM (30/70 wt%) nanocomposites, surface resistivity decreases with increasing the rotor speed from 30 to 60 rpm. But further increase in rotor speed (90 rpm) leads to an increase of surface resistivity. When the MWCNTs were added after the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNTnanocomposite is lower than that of uncross‐linked PP/EPDM/MWCNT nanocomposite. However, when the MWCNTs were added before the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNT nanocomposite is >1012 Ω/square. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

13.
14.
The interface between nanoparticles and the polymer matrix, which dominates the electrical properties of nanocomposites, can effectively improve the DC breakdown and suppress space charge accumulation in nanocomposites. To research the interface characteristics, XLPE/SiC nanocomposites with concentrations of 1 wt%, 3 wt% and 5 wt% were prepared. The DC breakdown, dielectric properties and space charge behavior were examined using pulsed electro-acoustic (PEA) equipment and a dielectric analyzer. The test results show that the nanocomposites with concentrations of 1 wt% and 3 wt% have higher DC breakdown field strength than neat XLPE. In contrast, there is a lower DC breakdown strength at a concentration of 5 wt%, possibly due to the agglomeration of nanoparticles. Nanoparticle doping increases the real and imaginary permittivities over those of neat XLPE. Furthermore, with increasing concentration, a larger increase in the permittivity amplitude was observed. Based on the space charge behavior, all nanocomposites could suppress space charge accumulation, but the nanocomposite with a concentration of 1 wt% exhibited the best effect. Meanwhile, heterocharge accumulation near electrodes was observed in neat XLPE and the nanocomposite with a concentration of 5 wt%. In contrast, homocharge accumulation near electrodes was observed in the nanocomposite with a concentration of 3 wt%. This phenomenon may be due to different amounts of shallow traps in nanocomposites with different concentrations, which might lead to differing electron or hole mobility.  相似文献   

15.
Novel thin sheets based on poly (lactic acid)/poly (caprolactone)/thermoplastic starch ternary blends were fabricated by incorporating thymol, zinc oxide nanoparticles (ZnO-NPs) and thymol/ZnO-NPs at different concentrations (6, 9, 12 wt% thymol and 1, 3, 5 wt% ZnO). The gas/water vapor barrier properties of the nanocomposites comprising the effects of polar and non-polar molecules and their leading mechanisms were thoroughly discussed. Moreover, the localization preference of ZnO-NPs, morphology along with mechanical, and thermal properties of the nanocomposites were investigated. A significant improvement of 58% in the water vapor impermeability by 5 wt% ZnO and 12 wt% thymol loading was achieved. Finally, the fitting of the Maxwell model on the experimental data revealed that this model cannot correctly predict the permeation behavior of ZnO-filled nanocomposites. Results suggested that these nanocomposites could be capable of being used as the packaging materials with high barrier performance.  相似文献   

16.
Multi‐walled carbon (MWCNT) and tungsten disulfide (INT‐WS2) nanotubes are materials with excellent mechanical properties, high electrical and thermal conductivity. These special properties make them excellent candidates for high strength and electrically conductive polymer nanocomposite applications. In this work, the possibility of the improvement of mechanical, thermal and electrical properties of poly(trimethylene terephthalate) (PTT) by the introduction of MWCNT and INT‐WS2 nanotubes was investigated. The PTT nanocomposites with low loading of nanotubes were prepared by in situ polymerization method. Analysis of the nanocomposites' morphology carried out by SEM and TEM has confirmed that well‐dispersed nanotubes in the PTT matrix were obtained at low loading (<0.5 wt%). Thermal and thermo‐oxidative stability of nanocomposites was not affected by the presence of nanotubes in PTT matrix. Loading with INT‐WS2 up to 0.5 wt% was insufficient to ensure electrical conductivity of PTT nanocomposite films. In the case of nanocomposites filled with MWCNT, it was found that nanotube incorporation leads to increase of electrical conductivity of PTT films by 10 orders of magnitude, approaching a value of 10?3 S/cm at loading of 0.3 wt%. Tensile properties of amorphous and semicrystalline (annealed samples) nanocomposites were affected by the presence of nanotubes. Moreover, the increase in the brittleness of semicrystalline nanocomposites with the increase in MWCNT loading was observed, while the nanocomposites filled with INT‐WS2 were less brittle than neat PTT. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In recent years, the essential work of fracture (EWF) method has been extensively employed for assessing a material's toughness by specific essential fracture work, especially for polymers showing ductile failure. However, most research has studied either the in-plane stress mode or the out-of-plane stress mode. To obtain a more in-depth understanding of the EWF theory, the specific essential and non-essential fracture work of polypropylene random copolymer (PP-R) was investigated in both in-plane stress mode and out-of-plane stress mode. The effects of ligament length, amount of pre-cracking and pre-cracking method on the specific essential and non-essential fracture work were explored. The specific essential fracture work obtained in both stress modes is compared and discussed.  相似文献   

18.
Multi-walled carbon nanotube (MWCNT)/poly(glycerol–sebacate–citrate) (PGSC) elastomer composite were prepared and their morphologies, compositions, glass transition temperatures, mechanical properties, water absorption, biodegradation and cytotoxicity were investigated. Results showed that the chemical structures of PGSC elastomers were hardly influenced by the MWCNT loadings, and physical adsorption was thought as the main interaction between the MWCNTs and PGSC matrixes. When the MWCNT loading was 3 wt%, MWCNTs displayed a homogenous dispersion in the matrixes, and the composite's strength and modulus respectively reached 4.4 MPa and 9.2 MPa, increasing by 62.96% and 33.33% than that of pure PGSC matrixes. The degradation rates of the composites tended to decrease with the increase of MWCNT loadings in simulated body fluid (SBF) solution. The composites presented no cytotoxicity especially when the MWCNT loadings were above 1 wt%. We expect the composites can be used as degradable bio-coatings and tissue engineering scaffolds in future.  相似文献   

19.
《印度化学会志》2021,98(10):100151
The objective of this work is to study the influence of additives of multi-walled carbon nanotubes (MWCNT) and silica nano-powder (SiO2) on the mechanical behavior of epoxy resin. Different volume fractions of MWCNT and SiO2were added. Mechanical characterization by tensile, three-point bending and Charpy tests were carried out. The experimental results show an increase in the mechanical performance of the mixtures (MWCNT ​+ ​epoxy), (SiO2 ​+ ​epoxy) up to 2% of additive. Beyond this value, a degradation of performance was observed. The addition of MWCNT gives better results when compared to the addition of SiO2. KIC-KCV correlations were made using empirical formulas to estimate the critical stress intensity factor KIC from the impact energy of the Charpy test.Unfortunately, this estimation does not provided a promising results, but other optimization methods were used to fit these empirical models to the behavior of our nanocomposites for which a good estimate was obtained after fitting these empirical models for SiO2.  相似文献   

20.
Polystyrene/graphene nanoplatelets (PS/GNP) and polystyrene/multi-walled carbon nanotube (PS/MWCNT) nanocomposites were prepared through solution mixing processing. The effect of carbon filler (CF) (GNP or MWCNT) doping on the DC/AC electrical conductivity, dielectric characteristics and optical parameters (absorption coefficient, α and band gap energy, Eg) of nanocomposites were investigated and compared for similar doping concentrations. The observed behavior of the DC surface conductivity for PS/CF nanocomposites was explained according to the classical percolation theory, where the percolation thresholds (ϕc) for PS/GNP and PS/MWCNT nanocomposites were determined as 12.0 vol% and 3.81 vol% and the critical exponents (t) were calculated as 2.19 and 2.13, respectively. These results indicate that CFs create three dimensional CF network in PS matrix. The dielectric relaxation properties and the AC conductivity studied by means of Broadband Dielectric Spectroscopy (BDS) measurements, showed that the presence of carbon fillers significantly enhanced the capacitive/charge storage capabilities of the nanocomposites. The optical band gap energies (Eg) of PS/GNP and PS/MWCNT nanocomposites were obtained by using Tauc method. From applicative point of view, with their enhanced dielectric and AC conductivity properties of the PS/GNP and PS/MWCNT nanocomposites have the potential to be used in energy storage and electromagnetic interference (EMI) shielding applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号