首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the effect of physical aging on environmental stress cracking (ESC) behavior of polycarbonate (PC), sub-Tg annealing was utilized as a method for accelerated aging. Injection molded samples were annealed at 130 °C for different time varying up to 96 h. A three point bending apparatus was used to evaluate critical stress for crazing and to record the variation of stress with immersion time at constant strain. The ESC results indicated that the critical stress for crazing initiation of PC in ethanol is increased by sub-Tg annealing. However, the resistance of annealed PC to ESC with immersion time during the stress relaxation test depends on the level of initial stress. When a relatively low initial stress was used, a short time (24 h) of sub-Tg annealing reduced the stress relaxation rate and decreased the number of cracks on the surface of PC. However, under higher initial stress, the stress relaxation rate of PC had a slight change only when the annealing time was prolonged about threefold (72 h). This can be explained by the formation of cohesional entanglement sites during the sub-Tg annealing process, which was demonstrated by the thermal and dynamic mechanical tests.  相似文献   

2.
In this paper, a heterogeneous precipitation method utilizing urea hydrolysis was adopted to coat a SiO2 layer on the surface of SrAl2O4:Eu2+, Dy3+ long persistence phosphors. To avoid phosphor hydrolysis in a water-containing coating medium, the hydrolysis and polymerization reactions of tetraethyl orthosilicate (TEOS) were concerned and carried out. The crystal phases, surface morphologies, hydrolysis stability and water resistance on afterglow properties of coated phosphors were investigated. Scanning electron microscopy, energy dispersive spectrum analysis, transmission electron microscope and Fourier transform infrared spectrum results confirmed that a continuous, uniform and compact SiO2 coating layer was successfully obtained on the phosphors surface. A theoretical coating amount of 5% or higher was found to be good for hydrolysis stability. Photoluminescence results revealed the coated phosphors showed much better water resistance on afterglow properties than the uncoated phosphor. We also discussed and proposed the hydrolysis restriction mechanism of SrAl2O4:Eu2+, Dy3+ in the water-containing coating medium.  相似文献   

3.
Silicone-acrylic resin (SAR) was prepared from acrylic monomers and silicone prepolymer by the free radical solution polymerization, and then mixed TiO2 and SiO2 nanoparticles modified by KH570 were added to prepare nanocomposite coating. Thermogravimetric analysis and contact angle measurements showed that the acrylic resin modified by silicone prepolymer exhibited an improved thermostability and a better hydrophobicity compared with the unmodified sample. The adding of nanoparticles further increased the hydrophobicity. The contact angle of modified silicone-acrylic resin with mixed TiO2 and SiO2 nanoparticles of 3 wt% is the highest, 108.4°. The UV resistance and weather resistance of the modified silicone-acrylic resin are significantly improved. It was also found through electrochemical impedance spectroscopy that the corrosion resistance was significantly improved by the addition of mixed TiO2 and SiO2 nanoparticles. Modified silicone-acrylic resin with mixed TiO2 and SiO2 nanoparticles of 3 wt% and 5 wt% coating system maintains an excellent anticorrosion performance (coating resistance Rc of more than 109 Ω cm2) even at 3.5% NaCl electrolyte medium till to 1800 h.  相似文献   

4.
In this paper, we present the design and preparation of a type of high-strength SiO2/TiO2 AR coatings used in solar glass by dip coating method. The average transmittance of glass coated in this way is increased by more than 6% in the wavelength from 400 to 800 nm, which fits well with the theoretical expectation. The mechanical performance and atmospheric exposure tests prove that the coatings have scratch resistance, erosion resistance and long-time stability. The AFM morphology shows that the surface of the coating is very smooth with the experimental result of RMS roughness 0.306 nm. These phenomena indicate that the SiO2/TiO2 AR coatings have high potential commercialization for low-cost solar glass.  相似文献   

5.
Hybrid silica coatings based on 3- glycidoxypropyltriethoxysilane (GPTES), tetraethylorthosilicate (TEOS) and colloidal silica were deposited on polycarbonate (PC) by the sol–gel method, in order to obtain a material with enhanced properties with respect to raw PC (mainly scratch resistance, hydrophobicity and density), and consequently reach increased durability. The necessity of performing a N2-plasma treatment on PC (before coating deposition) was highlighted in order to obtain a good adherence between the coating and the substrate: XPS measurements showed that after treatment, nitrogenous radicals had formed on the PC surface and were able to link covalently with the sol during its deposition. Adherence was also higher when young sols (<8-day-old) were used. Different alkoxysilanes/colloidal silica ratios were tested to optimize the coating resistance: crack resistance of the coatings was found to be greater when the ratio was high. Scratch resistance of raw PC was enhanced as soon as PC was coated, irrespective of the alkoxysilanes/colloidal silica ratio or the sol ageing time. The density of the coatings was assessed by environmental ellipsometric porosimetry and found to be very high. Water contact angle measurements showed that the hydrophobicity of the coatings was inferior to raw PC. The addition in the sol of a small wt% of octyltriethoxysilane (OTES), 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTES) and silicone surface additive (BYK-306) allowed a significant increase in hydrophobicity of the samples.  相似文献   

6.
To enhance the poor scratch resistance of polycarbonate, a silica (SiO2) and titania (TiO2) transparent inorganic coatings was designed and synthesized using a microwave assisted sol–gel heating. Due to the transparency of PC to microwave, the idea was to obtain a localized heating only on the coating film. The obtained films were fully characterized to mainly evaluate the effect of titania content, added both as nanoparticles and from tetraethyl orthotitanate, TEOT, on scratch resistance and surface morphology. Particular attention was paid to preserve the transparency of the final product. The results allowed to define that TEOT addition enhances the adhesion between coating and polycarbonate, even if the optimized quantity have to be defined in order to avoid a decrease of coating mechanical resistance. In this work optimized TEOT level results to be the associated to 5 wt% of TiO2, which enable the better balancing between adhesion and mechanical resistance performances.  相似文献   

7.
The effect of different new sol-gel BaO—TiO2—SiO2 and CaO—BaO—TiO2—SiO2 coatings on long-term durability of glass fiber reinforced cement (GRC) was examined. Flexural strength of GRC was measured after curing for 7 to 150 days. Significant improvement was observed for coated GRC in this study and discussed in terms of the hydrate formation at interface. Concerned with the alkali resistance, CaO—BaO—TiO2—SiO2 coating was more effective than BaO—TiO2—SiO2 coating. In special, the 10CaO—10BaO—60TiO2—20SiO2 coating, prepared by sol-gel method, was recommended for the highest flexural strength of GRC and least corrosion at surface of E-glass fiber.  相似文献   

8.
Three commercial grades of polycarbonates (Lexan® 144, Lexan® 104 and Makrolon Rx1805) were studied with respect to resistance to environmental stress cracking (ESC) when exposed to butter and related chemicals. The polycarbonates (PCs) were extensively characterised to determine whether differences in ESC resistance could be related to their structural or chemical properties. MALDI-TOF mass spectrometry revealed that Makrolon Rx1805 contains a low molar mass material characterised as poly(propylene glycol)p, which was confirmed by ATR-FTIR and 1H NMR. Some “non-absorbing” chemicals, such as butter, cause the PCs to be less resistant to ESC under stress. The reason for this is that these chemicals and the PCs have sufficiently similar Hansen solubility parameters to allow surface conformational changes even though absorption is non-existent or extremely small. ATR-FTIR was used to detect changes in molecular structure in the PC surfaces.  相似文献   

9.
To study the influence of different concentrations of zinc oxide (ZnO)/silicon dioxide (SiO2) composite coating on hydrophobic property and mechanical stability of paper mulch film, three kinds of ZnO/SiO2 composite coating paper mulch films (2%, 4%, 6%) with different coating substance contents were prepared by brush coating method. Through particle size analysis, contact angle, rolling angle and mechanical stability test, combined with scanning electron microscope, three-dimensional morphology and roughness measuring instrument, the optimal concentration of ZnO/SiO2 composite coated paper mulch film was screened out. Through acid-base salt corrosion test, silver mirror reaction and surface self-cleaning, the optimal concentration of composite coated paper mulch film was compared with the original paper mulch film to prove its excellent chemical stability and hydrophobicity. The results show that the paper mulch film with 4% coating material has excellent hydrophobicity and mechanical stability, can effectively reduce the surface roughness of paper mulch film, and has remarkable effects in resisting acid, alkali and salt and self-cleaning.  相似文献   

10.
《Analytical letters》2012,45(13):2515-2523
Abstract

Cellulose tris(3,5‐dimethylphenylcarbamate) (CDMPC) coated TiO2/SiO2 has been prepared by coating CDMPC on TiO2/SiO2 which consists of micrometer‐sized silica spheres as core and nanometer‐sized titania particles as surface coating. Eight basic indole ring derivative enantiomers were separated on this CDMPC coated CSP and symmetrical peaks were obtained using hexane as the mobile phase and various alcohols as modifiers. The influence of the mobile phase composition and structural variation of the solutes on the enantioseparation was investigated and discussed.  相似文献   

11.
Sol-gel coatings composed of SiO2, SiO2-TiO2, SiO2-ZrO2 and SiO2-TiO2-ZrO2 were prepared on different technical enamels as substrates. Thin (from 80–300 nm) and thick (up to 2 μm) films were deposited by the dip coating method. The chemical durability of the coated and uncoated enamels was tested against acidic and basic attack in accordance with DIN ISO standards. The experimental results show that the thin SiO2 coatings increase the chemical resistance of the coated enamels against oxalic acid attack by a factor of 4 to 22 compared to the uncoated ones. Especially efficient were SiO2 films of 1 μm thickness, based on MTEOS-TEOS solutions. SiO2 films do not protect the enamels against NaOH attack; however, an SiO2-ZrO2 coating on a non-resistant low-network former enamel significantly increases its stability against this basic attack. SNMS in-depth profiles show that in this case Na, Ca and Ba diffuse from the enamel substrate into the sol-gel layer, apparently stabilizing it.  相似文献   

12.
Since the layered double hydroxides (abbreviatedas LDHs) were firstly reported to be used as precur-sors of new catalytic materials by S. Miyata[1] in 1971,their preparations, ion-exchanges with the balancinginterlayer anions, structure characteristics an…  相似文献   

13.
Correlations of the stress-intensity factor K with crack speed a have been obtained for environmental stress cracking (ESC) of a series of low-density polyethylenes in detergent. In the majority of the materials, the crack speed increases initially with increasing K, then becomes constant, and finally starts decreasing. The ESC resistance increases with increasing molecular weight and, in general, the quenched materials show greater ESC resistance than slowly cooled ones. The crack propagation results agree well with the ESC model of Williams. Attempts have also been made to understand the micromechanics of ESC failure from a combined approach of K, the crack tip characteristics, and the fracture surface appearance. The roughness of the fracture surface increases with increasing K.  相似文献   

14.
Organic resin cross-linking ZIF-67/SiO2 superhydrophobic (SHPB) multilayer coating was successfully fabricated on metal substrate. The perfluoro-octyl-triethoxy silane (POTS) modified ZIF-67 and SiO2 coating was applied on primary coated polytetrafluoroethylene (PTFE) and epoxy resin (EP) via spray coating method. Here, we present that the robust superhydrophobicity can be realized by structuring surfaces at two different length scales, with a nanostructure design to provide water repellence and a microstructure design to provide durability. The as-fabricated multilayer coating displayed superior water-repellence (CA=167.4°), chemical robustness (pH=1–14) and mechanical durability undergoing 120th linear abrasion or 35th rotatory abrasion cycle. By applying different acidic and basic corrosive media and various weathering conditions, it can still maintain superior-hydrophobicity. To get a better insight of interaction between inhibitor molecules and metal surface, density functional theory (DFT) calculations were performed, showing lower energy gap and increased binding energy of ZPS/SiO2/PTFE/EP (ZPS=ZIF-67+POTS) multilayer coating compared to the ZIF-67/SiO2/PTFE/EP, thereby supporting the experimental findings. Additionally, such coatings may be useful for applications such as anti-corrosion, self-cleaning, and anti-icing multi-functionalities.  相似文献   

15.
The Ti-6Al-4V alloy was treated in concentrated phosphoric acid solution and by powder blasting, respectively, subsequently coated by silica using sol–gel dip-coating technique. A barrier layer of titanium pyrophosphate (TiP2O7) was synthesized at the Ti-6Al-4V substrate surface after the heat treatment. XRD and SEM/EDS analysis revealed that an amorphous silica coating was formed on the alloy. The isothermal and cyclic oxidation behavior of the treated alloy with silica coating and the corresponding bare alloy was investigated at 600 °C in static air to investigate the synergetic effect of the SiO2 coating and surface treatment on the oxidation resistance of the alloy by thermogravimetry. The average parabolic rate constants of the treated specimens with silica coating were greatly reduced. The stratified oxide layer formed on the bare alloy, while thinner oxide layer formed on the treated alloys with silica coating. The oxidation resistance of the present alloy was improved. The effect of silica coating on the microhardness of the substrate was investigated.  相似文献   

16.
Environmental stress cracking (ESC) is a premature failure of a polymer exposed to a fluid, under stress which is much less than its yield stress. Many experimental works were done before in an effort to predict experimentally the ESC potential of a fluid in different polymers. None of the previous works applied molecular modeling techniques to predict this potential so this work is a pioneering work. This study's goal was to apply atomistic molecular modeling techniques to gain a better understanding of the ESC mechanism and to predict the ESC potential of different fluids in polymers. Our model experimental system was amorphous polycarbonate (PC) with water as an ESC fluid. The computational study was expanded to include a high level ESC fluid for PC–toluene and a non ESC fluid–BD, together with the moderate ESC fluid–water. A clear distinction between ESC fluids and non ESC fluids for PC was achieved by means of molecular modeling. The experimental work approved that water is an ESC fluid for PC as predicted in the computational part. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
用共沉淀法和负载法制备了一系列SO  相似文献   

18.
不同厚度三倍频SiO2增透膜的设计、制备与改性   总被引:1,自引:0,他引:1  
本文通过光学计算设计了具有不同厚度的三倍频增透膜。以氨水为催化剂、正硅酸乙酯(TEOS)为前驱体,通过溶胶-凝胶(Sol-Gel)技术制得SiO2溶胶;采用浸渍提拉法镀膜得到符合设计要求的三倍频增透膜。研究结果表明,增透膜的耐磨擦性能随着膜层厚度的增大而增大,本文制得的厚度达到200 nm以上的三倍频增透膜耐磨擦性能显著优于传统的1/4波长三倍频增透膜。此外,本文以甲基含氢硅油为膜表面修饰剂,提出一种全新的超快的表面疏水性改性的方法。经该方法处理后,增透膜由亲水膜转变为疏水膜,对水的接触角从23.4°增大至95°,增透膜的耐环境性显著提高。  相似文献   

19.
Due to a smooth hydrophobic surface of Kapton film, it is very difficult to coat an inorganic oxide coating on its surface. In this study, the surface of Kapton was treated by NH3·H2O and silicon coupling agent to improve the polymer surface wettability. Changes in surface hydrophilicity were studied by contact angle measurement. The samples were irradiated by atomic oxygen (AO) in a ground‐based simulation system. TiO2/SiO2 multi‐layer coatings were prepared on the surface of Kapton by sol–gel method to resist AO erosion. The optical transmittance and surface morphology of samples were investigated by UV–vis spectroscopy and scanning electronic microscope. The results indicated that the TiO2/SiO2 sol could easily form a uniform thin coating on the surface of pretreated Kapton. After AO exposure, the coatings became more compact, without peeling off. The AO erosion yield value of coated Kapton was sharply down, and the samples had good optical transparency. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
向Pt-Pd/CeO2-ZrO2-Al2O3 (Pt-Pd/CZA)商用柴油机氧化型催化剂(DOC)中加入多孔SiO2以提高其抗硫性. 使用多层涂覆法在Pt-Pd/CZA 催化剂表面覆盖一层多孔SiO2,从而制得SiO2/Pt-Pd/CeO2-ZrO2-Al2O3(SiO2/Pt-Pd/CZA)抗硫DOC. 并使用扫描电子显微镜(SEM),H2程序升温还原(H2-TPR),氮气吸脱附,X射线能谱(EDX)和热重分析(TGA)等对其进行表征. SEM结果显示,SiO2层以多孔形式均匀覆盖在催化剂表面. 氮气吸脱附结果表明,所添加的SiO2的织构性质与Pt-Pd/CZA 催化剂的织构性质相似,因而表面覆盖的SiO2并未明显改变Pt-Pd/CZA催化剂的比表面积和孔结构. H2-TPR结果证实表面覆盖的SiO2不影响Pt-Pd/CZA催化剂的还原性能. EDX和TGA结果说明表面覆盖SiO2可以抑制硫物种在催化剂表面的形成及累积. 最终,本文所制备的SiO2/Pt-Pd/CZA催化剂在保持Pt-Pd/CZA商用DOC的高活性及耐久性的同时有效提高了其抗硫性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号