首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2021,32(10):3137-3142
Ammonia (NH3) is considered an attractive candidate as a clean, highly efficient energy carrier. The electrocatalytic nitrogen reduction reaction (NRR) can reduce energy input and carbon footprint; therefore, rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH3 synthesis. Herein, we report that the enzymatic mechanism is the more favourable pathway for NRR, due to lower limiting potential (−0.44 V), lower free energy (only 0.02 eV) of the first hydrogenation step (*N–N to *NH–N), and more electron transfer from Fe2B2 to the reaction species. In addition, both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step. Therefore, we have demonstrated that Fe2B2 is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH3 synthesis.  相似文献   

2.
3.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body-centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h−1 mg−1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at −0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face-centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

4.
《中国化学快报》2023,34(7):107841
Ammonia (NH3), as an important chemical substance and clean energy carrier, plays an indispensable role in industrial and agricultural production. The electrocatalytic synthesis of NH3 under mild conditions has attracted worldwide attention in the energy field due to its environmental friendliness and cost efficiency, but unsatisfactory NH3 yields and Faradaic efficiencies are restricting its development. The introduction of defect has been demonstrated as a feasible way to overcome the disadvantages of electrochemistry, as it can regulate the electronic structure and modulate coordination environment of electrocatalysts, which further create active sites and enhance nitrogen adsorption. In this regard, it is necessary to understand the effects of various types of defects on electrocatalysts based on the latest progress in the defect engineering for nitrogen reduction reaction (NRR). In this review, the concept, classifications, and characterization of defects as well as the approaches to create them in electrocatalysts are firstly discussed. Then, certain types of defects (vacancy, dopant, amorphism, edge/corner, and porousness) affecting the performances of various electrocatalysts are further described. Finally, the summary and challenges of electrocatalytic ammonia synthesis are proposed to design advanced electrocatalysts with high efficiency.  相似文献   

5.
The synthesis of ammonia (NH3) through the electrochemical reduction of molecular nitrogen (N2) is a promising strategy for significantly reducing energy consumption compared to traditional industrial processes. Herein, we report the design of a series of monovacancy and divacancy defective graphenes decorated with single 3d transition metal atoms (TM@MVG and TM@DVG; TM=Sc−Zn) as electrocatalysts for the nitrogen-reduction reaction (NRR) aided by density functional theory (DFT) calculations. By comparing energies for N2 adsorption as well as the free energies associated with *N2 activation and *N2H formation, we successfully identified V@MVG, with the lowest potential of −0.63 V, to be an effective catalytic substrate for the NRR in an enzymatic mechanism. Electronic properties, including Bader charges, charge density differences, partial densities of states, and crystal orbital Hamilton populations, are further analyzed in detail. We believe that these results help to explain recent observations in this field and provide guidance for the exploration of efficient electrocatalysts for the NRR.  相似文献   

6.
The electrochemical reduction reaction of nitrogenous species such as NO3 (NO3RR) and N2 (NRR) is a promising strategy for producing ammonia under ambient conditions. However, low activity and poor selectivity of both NO3RR and NRR remain the biggest problem of all current electrocatalysts. In this work, we fabricated Cu-nanosphere film with a high surface area and dominant with a Cu(200) facet by simple electrodeposition method. The Cu-nanosphere film exhibits high electrocatalytic activity for NO3RR and NRR to ammonia under ambient conditions. In the nitrate environment, the Cu-nanosphere electrode reduced NO3 to yield NH3 at a rate of 5.2 mg/h cm2, with a Faradaic efficiency of 85 % at −1.3 V. In the N2-saturated environment, the Cu-nanosphere electrode reduced N2 to yield NH3 with the highest yield rate of 16.2 μg/h cm2 at −0.5 V, and the highest NH3 Faradaic efficiency of 41.6 % at −0.4 V. Furthermore, the Cu-nanosphere exhibits excellent stability with the NH3 yield rate, and the Faradaic efficiency remains stable after 10 consecutive cycles. Such high levels of NH3 yield, selectivity, and stability at low applied potential are among the best values currently reported in the literature.  相似文献   

7.
NH3 synthesis by the electrocatalytic N2 reduction reaction (NRR) under ambient conditions is an appealing alternative to the currently employed industrial method—the Haber–Bosch process—that requires high temperature and pressure. We report single Mo atoms anchored to nitrogen‐doped porous carbon as a cost‐effective catalyst for the NRR. Benefiting from the optimally high density of active sites and hierarchically porous carbon frameworks, this catalyst achieves a high NH3 yield rate (34.0±3.6 μg h?1 mgcat.?1) and a high Faradaic efficiency (14.6±1.6 %) in 0.1 m KOH at room temperature. These values are considerably higher compared to previously reported non‐precious‐metal electrocatalysts. Moreover, this catalyst displays no obvious current drop during a 50 000 s NRR, and high activity and durability are achieved in 0.1 m HCl. The findings provide a promising lead for the design of efficient and robust single‐atom non‐precious‐metal catalysts for the electrocatalytic NRR.  相似文献   

8.
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni−O−Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni−O−Ir bridge induced the optimization of H2O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.  相似文献   

9.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

10.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body‐centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h?1 mg?1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at ?0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face‐centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

11.
The electrochemical nitrogen reduction reaction (NRR) is a promising energy-efficient and low-emission alternative to the traditional Haber–Bosch process. Usually, the competing hydrogen evolution reaction (HER) and the reaction barrier of ambient electrochemical NRR are significant challenges, making a simultaneous high NH3 formation rate and high Faradic efficiency (FE) difficult. To give effective NRR electrocatalysis and suppressed HER, the surface atomic structure of W18O49, which has exposed active W sites and weak binding for H2, is doped with Fe. A high NH3 formation rate of 24.7 μg h−1 mgcat−1 and a high FE of 20.0 % are achieved at an overpotential of only −0.15 V versus the reversible hydrogen electrode. Ab initio calculations reveal an intercalation-type doping of Fe atoms in the tunnels of the W18O49 crystal structure, which increases the oxygen vacancies and exposes more W active sites, optimizes the nitrogen adsorption energy, and facilitates the electrocatalytic NRR.  相似文献   

12.
Electrochemical reduction of N2 to NH3 is a promising method for artificial N2 fixation, but it requires efficient and robust electrocatalysts to boost the N2 reduction reaction (NRR). Herein, a combination of experimental measurements and theoretical calculations revealed that a hybrid material in which ZnO quantum dots (QDs) are supported on reduced graphene oxide (ZnO/RGO) is a highly active and stable catalyst for NRR under ambient conditions. Experimentally, ZnO/RGO was confirmed to favor N2 adsorption due to the largely exposed active sites of ultrafine ZnO QDs. DFT calculations disclosed that the electronic coupling of ZnO with RGO resulted in a considerably reduced activation-energy barrier for stabilization of *N2H, which is the rate-limiting step of the NRR. Consequently, ZnO/RGO delivered an NH3 yield of 17.7 μg h−1 mg−1 and a Faradaic efficiency of 6.4 % in 0.1 m Na2SO4 at −0.65 V (vs. RHE), which compare favorably to those of most of the reported NRR catalysts and thus demonstrate the feasibility of ZnO/RGO for electrocatalytic N2 fixation.  相似文献   

13.
A nanocomposite of PC/Sb/SbPO4 (PC, phosphorus‐doped carbon) exhibits a high activity and an excellent selectivity for efficient electrocatalytic conversion of N2 to NH3 in both acidic and neutral electrolytes under ambient conditions. At a low reductive potential of ?0.15 V versus the reversible hydrogen electrode (RHE), the PC/Sb/SbPO4 catalyst achieves a high Faradaic efficiency (FE) of 31 % for ammonia production in 0.1 m HCl under mild conditions. In particular, a remarkably high FE value of 34 % is achieved at a lower reductive potential of ?0.1 V (vs. RHE) in a 0.1 m Na2SO4 solution, which is better than most reported electrocatalysts towards the nitrogen reduction reaction (NRR) in neutral electrolyte under mild conditions. The change in surface species and electrocatalytic performance before and after N2 reduction is explored by an ex situ method. PC and SbPO4 are both considered as the active species that enhanced the performance of NRR.  相似文献   

14.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3. However, electrocatalytic NRR mainly relies on metal‐based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal‐free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 μg h?1 mg?1cat., Faradaic efficiency: 11.59 %) on metal‐free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as‐engineered nitrogen vacancies of PCN through constructing a dinuclear end‐on bound structure for spatial electron transfer. Furthermore, the N?N bond length of adsorbed N2 increases dramatically, which corresponds to “strong activation” system to reduce N2 into NH3. This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.  相似文献   

15.
Titanium‐based catalysts are needed to achieve electrocatalytic N2 reduction to NH3 with a large NH3 yield and a high Faradaic efficiency (FE). One of the cheapest and most abundant metals on earth, iron, is an effective dopant for greatly improving the nitrogen reduction reaction (NRR) performance of TiO2 nanoparticles in ambient N2‐to‐NH3 conversion. In 0.5 m LiClO4, Fe‐doped TiO2 catalyst attains a high FE of 25.6 % and a large NH3 yield of 25.47 μg h?1 mgcat?1 at ?0.40 V versus a reversible hydrogen electrode. This performance compares favorably to those of all previously reported titanium‐ and iron‐based NRR electrocatalysts in aqueous media. The catalytic mechanism is further probed with theoretical calculations.  相似文献   

16.
《中国化学快报》2023,34(3):107337
Ammonia is the feedstock chemical for most fertilizers and the alternative of renewable energy carriers. Environmentally benign electrochemical nitrogen reduction reaction (NRR) under mild conditions has been recognized as one of the most attractive strategies for N2 fixation. Herein, inspired by Mo-based nitrogenase, W/Mo-doping electrocatalysts were developed with mixed-metal polyoxometalate H3PW6Mo6O40 as the precursor for high performance electrocatalytic NRR. Trace amount of Pt was transplanted on the surface of W/Mo@rGO via in situ electroplating treatment to further improve the NRR performance. The resulting Pt-W/Mo@rGO-6 achieves excellent performance for NRR with a high NH3 yield of 79.2 µg h?1 mgcat?1 due to the multicomponent synergistic effect in the composite catalyst. The Pt-W/Mo@rGO-6 represents the first example of highly efficient NRR electraocatalyst derived from mixed-metal polyoxometalate, which exhibits outstanding stability confirmed by the constant catalytic performance over 24 h chronoamperometric test. This finding opens a new avenue to construct highly efficient NRR electrocatalyst by employing mixed metal polyoxometalate as the precursor under ambient conditions.  相似文献   

17.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing pathway to convert N2 into NH3. However, significant kinetic barriers of the NRR at low temperatures in desirable aqueous electrolytes remain a grand challenge due to the inert N≡N bond of the N2 molecule. Herein, we propose a unique strategy for in situ oxygen vacancy construction to address the significant trade-off between N2 adsorption and NH3 desorption by building a hollow shell structured Fe3C/Fe3O4 heterojunction coated with carbon frameworks (Fe3C/Fe3O4@C). In the heterostructure, the Fe3C triggers the oxygen vacancies of the Fe3O4 component, which are likely active sites for the NRR. The design could optimize the adsorption strength of the N2 and NxHy intermediates, thus boosting the catalytic activity for the NRR. This work highlights the significance of the interaction between defect and interface engineering for regulating electrocatalytic properties of heterostructured catalysts for the challenging NRR. It could motivate an in-depth exploration to advance N2 reduction to ammonia.  相似文献   

18.
Powered by renewable electricity, the electrochemical reduction of nitrogen to ammonia is proposed as a promising alternative to the energy‐ and capital‐intensive Haber–Bosch process, and has thus attracted much attention from the scientific community. However, this process suffers from low NH3 yields and Faradaic efficiency. The development of more effective electrocatalysts is of vital importance for the practical applications of this reaction. Of the reported catalysts, single‐atom catalysts (SACs) show the significant advantages of efficient atom utilization and unsaturated coordination configurations, which offer great scope for optimizing their catalytic performance. Herein, progress in state‐of‐the‐art SACs applied in the electrocatalytic N2 reduction reaction (NRR) is discussed, and the main advantages and challenges for developing more efficient electrocatalysts are also highlighted.  相似文献   

19.
The fixing of N2 to NH3 is challenging due to the inertness of the N≡N bond. Commercially, ammonia production depends on the energy-consuming Haber-Bosch (H−B) process, which emits CO2 while using fossil fuels as the sources of hydrogen and energy. An alternative method for NH3 production is the electrochemical nitrogen reduction reaction (NRR) process as it is powered by renewable energy sources. Here, we report a tiara-like nickel-thiolate cluster, [Ni6(PET)12] (where, PET=2-phenylethanethiol)] as an efficient electro-catalyst for the electrochemical NRR at ambient conditions. Ammonia (NH3: 16.2±0.8 μg h−1 cm−2) was the only nitrogenous product over the potential of −2.3 V vs. Fc+/Fc with a Faradaic efficiency of 25%±1.7. Based on theoretical calculations, NRR by [Ni6(PET)12] proceeds through both the distal and alternating pathways with an onset potential of −1.84 V vs. RHE (i.e., −2.46 V vs. Fc+/Fc) which corroborates with the experimental findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号