首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
In comparison with normal damping rubbers such as natural rubber (NR), styrene butadiene rubber (SBR), isobutylene isoprene rubber (IIR) etc., Mo-based high vinyl polybutadiene rubber (HVBR) with high loss factor, excellent aging resistance and glass transition temperature closer to room temperature, is a promising damping material. The effective damping temperature range of HVBR could be further broadened by blending with ethylene-vinyl acetate (EVM) and the effects of blending methods (in situ polymerization blending or mechanical blending) and blending ratios on the damping properties and physical properties of HVBR/EVM blended rubber were studied. HVBR/EVM in situ polymerization blends was prepared by butadiene coordination polymerization by Mo-base catalyst in a toluene solution of EVM. The results of dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) of the blended vulcanizates via in situ polymerization blending revealed that the compatibility between HVBR and EVM was improved compared with that of the blended vulcanizates via the traditional mechanical blending method. The two phases of HVBR/EVM in situ polymerization blends had good dispersion and uniformity, the damping temperature range was significantly expanded, and the peak and valley of the damping temperature range were greatly improved. A blending ratio of HVBR/EVM900 = 100/40 showed the best damping properties and the effective damping temperature range (tanδ>0.3) was extended from −6.6 °C to 39.4 °C.  相似文献   

2.
In situ reactive compatibilization was first time applied to a low melting nylon (nylon 6 and 66 copolymer) and EPDM blend system. The effects of in situ compatibilization and concentration of compatibilizer on the morphology and mechanical properties of nylon/EPDM blends have been investigated. The influence of EPM‐g‐MA on the phase morphology was examined by the scanning electron microscopy (SEM) after preferential extraction of the minor phase. The SEM micrographs were quantitatively analyzed for domain size measurements. The compatibilizer concentrations used were 0, 1, 2.5, 5, and 10 wt%. The graft copolymer (nylon‐g‐EPM) formed at the interface showed relatively high emulsifying activity. A maximum phase size reduction was observed when 2.5 wt% of compatibilizer was added to the blend system. This was followed by a leveling‐off at higher loadings indicating interfacial saturation. The conformation of the compatibilizer at the interface was deduced based on the area occupied by the compatibilizer at the blend interface. The experimental compatibilization results were compared with theoretical predictions of Noolandi and Hong. It was concluded that the molecular state of compatibilizer at interface changes with concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties. Measurement of tensile properties shows increased elongation as well as enhanced modulus and strength up on compatibilization. At higher concentrations of compatibilizer, a leveling‐off of the tensile properties was observed. A good correlation has been observed between the mechanical properties and morphological parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This study aimed to enhance the dimensional stability of flat-pressed wood plastic composites (WPCs) containing fast growing wood fibres by a thermal-treatment method. The wood fibres were treated at three different temperatures (120, 150, or 180 °C) for 20 or 40 min in a laboratory autoclave. The WPC panels were made from dry-blended Eucalyptus camaldulensis wood fibres and polypropylene (PP) powder (50:50 by weight) using a conventional flat-press process under laboratory conditions. Thickness swelling and water absorption of the WPC panels significantly decreased with increasing the treatment temperature and time. The thermal-treatment of eucalyptus wood fibres slightly decreased the screw withdrawal resistance of the WPC panels as compared to the reference panels while the flexural properties and internal bond strength were more seriously affected by the treatment. The present study revealed that the thermal-treatment of the wood fibres significantly improved the dimensional stability of the WPC panels.  相似文献   

4.
Bone tissue engineering is an efficient approach to regenerating bone-related defects. The optimal scaffold used for bone tissue engineering must possess adequate porosity and suitable mechanical properties. This work described the development of a biodegradable polymeric composite based on polycaprolactone (PCL) and starch that can form a porous structure in situ. The scaffold exhibited the required mechanical properties at the initial stage of implantation by controlling in situ degradation and subsequent pore formation. PCL/starch (SPCL) scaffolds with 100/0, 70/30, and 50/50 ratios were developed. Degradation studies were performed in phosphate buffer saline (PBS) containing α-amylase or lipase at 37 °C for 4 weeks. Fourier-transform infrared spectroscopy was used to analyze chemical bonds and their changes after degradation. Differential scanning calorimetry was applied to determine the crystallinity and recrystallization of samples before and after degradation. Mass loss and starch release were observed during degradation, and the porosity of samples was measured by the ethanol replacement method. Morphology was further determined using scanning electron microscopy. Finally, variations in compressive strength and modulus during degradation and pore formation were also measured. The porosity of samples reached 45% after 1 month of degradation, and mechanical properties were still appropriate for human bone tissue. Reduction in mechanical property after mass loss, starch release and pore formation was controlled by the hydrogen bonding and recrystallization effect of PCL after degradation. Results suggested that SPCL composite had potential to form porous scaffold with adequate mechanical properties in situ and is promising for bone tissue engineering applications.  相似文献   

5.
The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//c-ZrO2 (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO2 being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO2 layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.  相似文献   

6.
Vitamin B12 (VB12) is one of the essential vitamins for the body, which is sensitive to light, heat, oxidizing agents, and acidic and alkaline substances. Therefore, the encapsulation of VB12 can be one of the ways to protect it against processing and environmental conditions in food. In this work, the influence of pectin concentration (0.5–1% w/v), whey protein concentrate (WPC) level (4–8% w/v) and pH (3–9) on some properties of VB12-loaded pectin–WPC complex carriers was investigated by response surface methodology (RSM). The findings showed that under optimum conditions (1:6.47, pectin:WPC and pH = 6.6), the encapsulation efficiency (EE), stability, viscosity, particle size and solubility of complex carriers were 80.71%, 85.38%, 39.58 mPa·s, 7.07 µm and 65.86%, respectively. Additionally, the formation of complex coacervate was confirmed by Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). In addition, it was revealed that the most important factor in VB12 encapsulation was pH; at a pH < isoelectric point of WPC (pH = 3), in comparison with higher pH values (6 and 9), a stronger complex was formed between pectin and WPC, which led to an increase in EE, lightness parameter, particle size and water activity, as well as a decrease in the zeta-potential and porosity of complex carriers.  相似文献   

7.
High energy density batteries are urgently required for sustainable life. The intrinsic understanding of the reaction mechanism at the interfaces is essential for the progress. In this short overview, recent advances in rechargeable batteries by in situ atomic force microscopy are summarized, providing nanoscale information on the solid product evolution and metal plating/stripping inside working batteries. Besides, the multifunctional imaging of the morphology along with mechanical and electrical properties can be achieved to assist further interfacial design. Extensive applications of in situ atomic force microscopy are encouraged to explore the electrochemical mechanism and advanced engineering.  相似文献   

8.
Electrical and mechanical properties of ceramic composites are investigated to develop “smart materials” and establish a fracture prediction technique. The “smart materials” are based on silicon carbide fibre-reinforced composites. The SiC-fibres were checked to determine the changes in mechanical and electrical properties during the composites’ production. Samples were produced for the determination of the mechanical strength with in situ detection of the degree of damage by recording the electrical resistance.  相似文献   

9.
In order to ameliorate the sensitivities, thermal and combustion properties of cyclotrimethylenetrinitramine (RDX), tannic acid (TA) is used to react with lead and copper via in situ self-assembly to coat RDX for preparing RDX@TA-Pb/Cu microcapsules. The structures of RDX@TA-Pb/Cu microcapsules are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier-transform infrared spectra (FT-IR). The surface topography of RDX@TA-Pb/Cu microcapsules are characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The mechanical sensitivities and explosion points of RDX@TA-Pb/Cu microcapsules are measured to study the influence of TA-Pb/Cu shells on mechanical and thermal safeties of RDX. The non-isothermal properties of RDX@TA-Pb/Cu microcapsules are characterized by differential scanning calorimetry (DSC). The catalytic effects of TA-Pb/Cu shells on RDX are characterized by accelerating rate calorimeter (ARC). The residues of RDX@TA-Pb/Cu microcapsules after combustion in air are collected and characterized by SEM and XRD to further study the catalytic effect of TA-Pb/Cu shells. The study results show that a 150 nm TA-Pb/Cu shells are uniformly coated on RDX surfaces. The chemical structure of RDX maintains constant during in situ self-assembly coating process. The mechanical and thermal safeties of RDX are enhanced after coating with TA-Pb/Cu shells. The decomposition and combustion property of RDX can be catalyzed by TA-Pb/Cu, and the catalytic effects of in situ self-assembly coating are better than that of physical mixing. The RDX@TA-Pb/Cu microcapsules can be used in RDX based composite modified double base (CMDB) propellants.  相似文献   

10.
Two component random co-polypeptide hydrogels consisting of N-hydroxypropyl l-glutamine and l-alanine (Ala) or l-phenylalanine (Phe) were prepared by performing aminolysis reactions with 3-amino-1-propanol together with crosslinking reaction with 1,8-octamethylenediamine on hydrogels of the starting co-polymers consisted of γ-benzyl l-glutamate and Ala or Phe. The relationship between their bulk structure and properties was evaluated with regard to the swelling ratio in water (q), the rate of water vapor permeability (Vf), tensile properties, and enzymatic degradation behaviors of hydrogels in a pseudo-extracellular fluid (PECF). The tensile property of the hydrogels was highly dependent on q in PECF, and on the hydrophobicity of the side chains. A relationship was obtained between the Vf and q of hydrogels in PECF regardless of the differences in the nature of the side chains. Biodegradation of the hydrogels in vitro by bromelain indicated that degradation took place in bulk rather than on the surface, and that the rate of degradation was also highly dependent on q in the samples as well as on the hydrophobicity of the side chains of the samples.  相似文献   

11.
A technique has been developed utilizing polarized Raman spectroscopy to measure alignment of carbon nanotubes in situ in a polymer matrix under an applied electric field. Previous studies of alignment have been restricted to optically transparent solvents or polymerized specimens that prevent accurate analyses of alignment dynamics in polymers. The effects of electric field strength on the degree of alignment and the time to achieve an aligned state are discussed. The use of in situ, real-time polarized Raman spectroscopy provides a non-invasive technique for assessing carbon nanotube alignment, which can assist in determining processing conditions to improve the mechanical and electrical properties of aligned nanocomposites.  相似文献   

12.
Novel bioengineering functional copolymer‐g‐biopolymer‐based layered silicate nanocomposites were fabricated by catalytic interlamellar bulk graft copolymerization of L‐lactic acid (LA) monomer onto alternating copolymer of maleic anhydride (MA) with 1‐octadecene as a reactive matrix polymer in the presence of preintercalated LA…organo‐MMT clay (reactive ODA‐MMT and non‐reactive DMDA‐MMT) complexes as nanofillers and tin(oct)2 as a catalyst under vacuum at 80°C. To characterize the functional copolymer layered silicate nanocomposites and understand the mechanism of in situ processing, interfacial interactions and nanostructure formation in these nanosystems, we have utilized a combination of variuous methods such as FT‐IR spectroscopy, X‐ray diffraction (XRD), dynamic mechanical (DMA), thermal (DSC and TGA‐DTG), SEM and TEM morphology. It was found that in situ graft copolymerization occurred through the following steps: (i) esterification of anhydride units of copolymer with LA; (ii) intercalation of LA between silicate galleries; (iii) intercalation of matrix copolymer into silicate layers through in situ amidization of anhydride units with octadecyl amine intercalant; and (iv) interlamellar graft copolymerization via in situ intercalating/exfoliating processing. The main properties and observed micro‐ and nanoporous surface and internal core–shell morphology of the nanocomposites significantly depend on the origin of MMT clays and type of in situ processing (ion exchanging, amidization reaction, strong H‐bonding and self‐organized hydrophobic/hydrophilic interfacial interactions). This developed approach can be applied to a wide range of anhydride‐containing copolymers such as random, alternating and graft copolymers of MA to synthesize new generation of polymer‐g‐biopolymer silicate layered nanocomposites and nanofibers for nanoengineering and nanomedicine applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
IntroductionBone scaffold is expected to possess excellent mechanical and biological properties similar to natural bone tissues. In this study, we aimed to prepare a biomineralized Col and hydroxyapatite composite scaffold consisting of biomimetic bone components and multi-level bionic bone structure to strengthen its mechanical properties.MethodsWe prepared a Col/nano-hydroxyapatite biological composite scaffold with multi-level structure (from nanofibers to micron bionic bone motif to bionc bone scaffold) of biomimetic bone tissue, and biomineralized the scaffold in simulated body fluid (SBF) preheated to 37 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscope, were used to characterize the biomineralized products.ResultsMorphological study confirmed in situ deposition of nHA in the multi-scale hierarchical structure of the biomineralized scaffold. We explored the biomineralization nucleation mechanism of the scaffolds at the atomic level based on the first principles and the mechanisms for growth of mineralized nHA crystal array in its multi-scale structure, and how the double multiscales structure strengthened the mechanical properties of the material.ConclusionsThis synthetic bone scaffold, with bionic bone composition and double multi-level interface reinforcement, provides a new strategy for synthesizing bioactive bone scaffolds with enhanced biomechanical properties.  相似文献   

14.
Lead/copper tannate (TA-Pb/Cu) and lead/copper salicylate (SA-Pb/Cu) interface catalyst shells are established on the surface of 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) via in situ coprecipitation to prepare HMX@TA-Pb/Cu and HMX@SA-Pb/Cu composites. The structures and properties of the obtained HMX@TA-Pb/Cu and HMX@SA-Pb/Cu composites are characterized in detail. Molecular dynamics simulations are performed to study the adsorption mechanism of TA-Pb/Cu and SA-Pb/Cu on HMX surface. The residues after HMX@TA-Pb/Cu and HMX@SA-Pb/Cu combusted in air are collected and characterized to study the catalytic effect of TA-Pb/Cu and SA-Pb/Cu on combustion. The study results show that TA-Pb/Cu shells are coated on HMX surface due to the excellent membrane-forming properties of TA, while SA-Pb/Cu shells are embedded in the gullies and holes of HMX surface. TA-Pb/Cu and SA-Pb/Cu shells can decrease the mechanical sensitivities and catalyze the decomposition and combustion of HMX, and the catalytic effects of in situ coprecipitation are better than that of physical mixing. In addition, the phase transition temperature of HMX in HMX@TA-Pb/Cu is increased while that of HMX@SA-Pb/Cu is decreased, illustrating that TA-Pb/Cu can enhance the thermal stability of HMX while SA-Pb/Cu can catalyze the phase transition of HMX.  相似文献   

15.
Smart polymers are advanced materials that continue to attract scientific community. In this work, self‐healing waterborne polyurethane/reduced graphene oxide (SHWPU/rGO) nanocomposites were prepared by in situ chemical reduction of graphene oxide in a waterborne polyurethane matrix. The chemical structure, morphology, thermal stability, mechanical property, and electrical conductivity of the SHWPU/rGO nanocomposites were characterized. The prepared SHWPU/rGO nanocomposites were further treated under heating, microwave radiating, and electrifying conditions to investigate their healing property. The results showed that chemical reduction of graphene oxide was achieved using hydrazine hydrate as a reducing agent and the rGO was well dispersed in the SHWPU matrix. The thermal stability and mechanical properties of SHWPU/rGO nanocomposites were significantly increased. The SHWPU/rGO nanocomposites can be healed via different methods including heating, microwave radiating, and electrifying. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 202–209  相似文献   

16.
The electronic, structural, elastic, thermal and mechanical properties of Lutetium intermetallic compounds LuX (X = Mg, Cu, Ag, Au, Zn, Cd and Hg) have been studied using ab-initio full potential linear augmented plane wave (FP-LAPW) with the generalized gradient approximation (GGA) in their non magnetic phase. The ground state properties such as lattice constant, bulk modulus, pressure derivatives of bulk modulus are reported in CsCl-(B2 phase) structure. We also report the band structure and density of states at equilibrium lattice constant. The calculated band structures indicate that these intermetallics are metallic in nature. The second order elastic constants of these compounds are also predicted for the first time. The ductility of these compounds is determined by calculating the bulk to shear ratio B/GH.  相似文献   

17.
Hybrid materials based on silicic acid and polymethyl methacrylate (PMMA) were prepared by in situ bulk polymerization of a silicic acid sol and MMA mixture. Silicic acid sol was obtained by tetrahydrofuran (THF) extraction of silicic acid from water. Silicic acid was prepared by hydrolysis and condensation of sodium silicate in the presence of 3.6 M HCl. As a comparative study, PMMA composites filled by silica particles, which were derived from calcining the silicic acid gel, were prepared by a comparable in situ polymerization. Each set of PMMA/silica composites was subjected to thermal and mechanical studies. Residual THF in PMMA/silicic acid composites impacted the properties of the polymer composites. With increase in silica content, the PMMA composites filled with silica particles showed improved thermal and mechanical properties, whereas a decrease in thermal stability and mechanical strength was found for PMMA composites filled with silicic acid dissolved in THF. With a better compatibility with polymer matrix, silicic acid sol shows better reinforcement than silica particles in PMMA films prepared via blending of the corresponding THF solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
HMX和HMX/HTPB PBX的晶体缺陷理论研究   总被引:3,自引:0,他引:3  
建立空位和掺杂点缺陷模型, 用分子动力学(MD)方法, 研究晶体缺陷对β-环四亚甲基硝胺(HMX)和β-HMX/HTPB(端羟基聚丁二烯)高聚物粘结炸药(PBX)的力学性能和爆炸性能的影响. 结果表明, 相对于HMX“完美”晶体(1)考察缺陷晶体(2和3), 以及相对于HMX完美晶体基PBX(1)考察缺陷PBX 2和PBX 3, 均发现弹性系数和(拉伸、体积、剪切)模量下降, 导致体系刚性减弱, 延展性和韧性增强. 这与在基炸药HMX晶体(1, 2和3)中分别加入HTPB高聚物粘结剂形成PBX 1, PBX 2和PBX 3呈现类似的相应的变化趋势和效果. 此外, 研究表明, 爆炸性质也依赖于体系的组成和结构. 因加入的是低能高聚物, 故PBX(1), PBX(2)和PBX(3)的爆热、爆速和爆压均比相应的基炸药(1, 2和3)低, 即晶体(1)>PBX(1), 晶体(2)>PBX(2), 晶体(3)>PBX(3). PBX(1), PBX(2), PBX(3)与对应基炸药(1, 2, 3)的爆速和爆压取相同变化次序, 亦即PBX(1)>PBX(2)>PBX(3)对应于晶体(1)>晶体(2)>晶体(3). 这些计算结果和规律对PBX配方设计显然具有指导作用.  相似文献   

19.
The chemical oxidation of aniline to form polyaniline (PANI) films was made in the presence of N-phenyl-1,4-phenylenediamine (PPDA) in aqueous hydrochloric acid medium. The PANI films were monitored by using the quartz crystal microbalance (QCM) technique. The effect of PPDA and its concentration on the film formation was investigated. It was found that PPDA decreases the yield of the PANI film, the induction period and the depletion time of the polymerization. However, the growth rate of the film formation was found to increase by increasing PPDA concentration. These results were justified by measuring the UV-VIS absorption spectra for the in situ PANI films and the in situ UV-VIS absorption spectra for the polymer in the bulk during the polymerization. The conductivity for the PANI films at different concentrations of PPDA was measured. Also, the IR spectra, X-ray and the thermal gravimetric analysis for the PANI powder formed in the bulk in the presence of PPDA were measured and discussed.  相似文献   

20.
Recently, chemical interface damping (CID) has been proposed as a new plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. It has been considered essential, owing to its potential implications in efficient photochemical processes and sensing experiments. However, thus far, studies focusing on controlling CID in single gold nanoparticles have been very limited, and in situ reversible tuning has remained a considerable challenge. In these scanning electron microscopy-correlated dark-field spectroscopic measurements and density functional theory calculations, cucurbit[7]uril (CB[7])-based host–guest supramolecular interactions were employed to examine and control the CID process using monoamine-functionalized CB[7] (CB[7]-NH2) attached to single gold nanorods (AuNRs). In situ tuning of CID through the CB[7]–oxaliplatin complexation, which can result in the variation of the chemical nature and electronic properties of adsorbates, was presented. In addition, in situ tuning of CID was demonstrated through the competitive release of the oxaliplatin guest from the oxaliplatin@CB[7] complex, which was then replaced by a competitor guest of spermine in sufficient amounts. Furthermore, nuclear magnetic resonance experiments confirmed that the release of the guest is the consequence of adding salt (NaCl). Thus, in situ reversible tuning of CID in single AuNRs was achieved through successive steps of encapsulation and release of the guest on the same AuNR in a flow cell. Finally, single CB[7]-NH2@AuNRs were presented as a recyclable platform for CID investigations after the complete release of guest molecules from their host–guest inclusion complexes. Therefore, this study has paved a new route to achieve in situ reversible tuning of CID in the same AuNR and to investigate the CID process using CB-based host–guest chemistry with various guest molecules in single AuNRs for efficient hot-electron photochemistry and biosensing applications.

This study has paved a new route to achieve in situ reversible tuning of chemical interface damping (CID) in the same gold nanorod (AuNR) and to investigate the CID process using cucurbituril (CB)-based host–guest chemistry with various guest molecules in single AuNRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号