共查询到20条相似文献,搜索用时 0 毫秒
1.
Amorphous polylactide/halloysite nanotube (PLA/HNT) nanocomposites were prepared and examined. Neat HNT and HNT treated with N,N'- ethylenebis(stearamide) (EBS) were used as nanofillers. The role of HNT and/or EBS content on the cold crystallization of amorphous PLA matrix, HNT dispersion, as well as on the dynamic mechanical and optical properties of the materials was determined.The PLA/HNT-based nanocomposites contained well-distributed nanotubes and occasionally micron-sized aggregates, especially at high loading. HNT, EBS treated HNT and EBS influenced the cold crystallization of PLA, therefore the formation of the disorder α′ and the order α crystallographic forms of PLA.The nanocomposites exhibited increased stiffness and decreased transparency compared to the neat PLA. Due to the reinforcing effect and additional specific features of HNT, the addition of the nanofiller allows tuning of the properties of the nanocomposites with amorphous PLA matrix. 相似文献
2.
<正>Hydroxyapatite/poly(L-lactide)(HA/PLLA) nanocomposites were prepared by the solvent mixing method.The isothermal crystallization behavior was studied by differential scanning calorimetry(DSC) and polarized optical microscopy (POM).The results show that the crystallization behavior of HA/PLLA composites was strongly affected by the content of HA and crystallization temperature,and the addition of HA could promote nucleation and enhance the crystallization rate. When isothermal crystallization was carried out at 110℃,the HA/PLLA nanocomposite with 1%HA content crystallized most rapidly among all the composites and the half crystallization time was only 1.0 min.Banded spherulites were observed for the HA/PLLA composites,but no banded spherulites were seen in the crystals of PLLA under the same condition. 相似文献
3.
Tanveer ul Haq Zia Ahmad Nawaz Khan Majid Hussain Ibrar Hassan Iftikhar Hussain Gul 《高分子科学》2016,34(12):1500-1509
The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline(PCNTs) have been investigated using impedance analyzer and extensometer. The blends of PS/PANI formed the heterogeneous phase separated morphology in which PCNTs are dispersed uniformly. The incorporation of a small amount of PCNTs into the blend of PS/PANI has remarkably increased the dielectric properties. Similarly, the AC conductivity of PS/PANI is also increased five orders of magnitude from 1.6 × 10~(-10) to 2.0 × 10~(-5) S·cm~(-1) in the hybrid nanocomposites. Such behavior of hybrid nanocomposites is owing to the interfacial polarization occurring due to the presence of multicomponent domains with varying conductivity character of the phases from insulative PS to poor conductor PANI to highly conductive CNTs. Meanwhile, the tensile modulus and tensile strength are also enhanced significantly up to 55% and 160%, respectively, without much loss of ductility for three phase hybrid nanocomposites as compared to the neat PS. Thereby, the hybrid nanocomposites of PS/PANI/_P CNTs become stiffer, stronger and tougher as compared to the neat systems. 相似文献
4.
A critical challenge for initiating many applications of the carbon nanotubes (CNTs) is their dispersion in organic solvent or in polymer melt. In the present study, we described a novel strategy for fabricating carbon nanotubes (CNTs)-reinforced epoxy nanocomposite by utilizing aniline trimer (AT) as the noncovalent dispersant. Tensile testing showed that the tensile modulus of the CNTs-reinforced epoxy composites was considerably improved by adding a small amount of AT functionalized CNTs. Additionally, the as-prepared CNTs-epoxy nanocomposites exhibited superior tribological properties with much lower frictional coefficients and wear rates compared to those of neat epoxy resin. The well dispersed AT-functionalized CNTs in epoxy matrix played an important role in enhancing the mechanical properties, as well as acting as a solid lubricant for improving the tribological performance of epoxy/CNTs nanocomposite. 相似文献
5.
Synergistic effect of carbon nanotubes and layered double hydroxides on the mechanical reinforcement of nylon-6 nanocomposites 总被引:1,自引:0,他引:1
Synergistic effect in network formation of nylon-6 (PA6) nanocomposites containing one dimensional (ID) multi-walled carbon nanotubes (CNTs) and two dimensional (2D) layered double hydroxide (LDH) platelets on improving the mechanical properties has been studied. Mechanical tests show that, with incorporation of 1 wt% LDHs and 0.5 wt% CNTs, the tensile modulus, the yield strength as well as the hardness of the ternary composite are greatly improved by about 230%, 128% and 110% respectively, as compared with neat PA6. This is mainly attributed to the unique, strong interactions between the CNTs and the LDHs as well as the jammed network-like structure thus formed between the nanofillers, as confirmed by the morphological observations. As compared with the binary nanocomposites, a much enhanced solid-like behavior in the terminal region of the rheological curves can clearly be observed for the ternary system, which also indicates the formation of a percolating filler network. 相似文献
6.
Sandrine Morlat-Therias Elisabeth Fanton Sophie Peeterbroeck Philippe Dubois 《Polymer Degradation and Stability》2007,92(10):1873-1882
The influence of carbon nanotubes on the photodegradation of EVA/carbon nanotube nanocomposites was studied by irradiation under photooxidative conditions (at λ > 300 nm, at 60 °C and in the presence of oxygen). The influence of the nanotubes on both the photooxidation mechanism of EVA and the rates of oxidation of the matrix was characterized on the basis of infrared analysis. On one hand, it was shown that the carbon nanotubes act as inner filters and antioxidants, which contribute to reduction in the rate of photooxidation of the polymeric matrix. On the other hand, it was shown that light absorption could provoke an increase in the local temperature and then induce the photooxidation of the polymer. The competition between these three effects determines the global rate of photooxidation of the polymeric matrix. Several factors are involved, the concentration of the carbon nanotubes, the morphology of the nanotubes and the functionalization of the nanotube surface. 相似文献
7.
Nihat Ali Isitman 《Polymer Degradation and Stability》2010,95(9):1523-5383
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes. 相似文献
8.
The effect of high molecular weight resin and multi-walled carbon nanotubes (MWCNTs) on the crystallization, rheological and dynamic mechanical properties of poly (vinylidene fluoride) (PVDF) composites was investigated. A synergetic effect of the high molecular weight resin and MWCNTs on the nucleation in the crystallization process of the matrix has been observed, and their contributions to the crystallization of the matrix are two-sided. The composites containing both the high molecular weight resin and MWCNTs have much higher crystallization peak temperatures but lower crystallinity, especially for samples with high MWCNT content. For the isothermal crystallization at relative high temperatures, higher Avrami exponent and shorter half-time of crystallization are observed for the composites containing both the high molecular weight resin and MWCNTs. The introduction of the high molecular weight resin not only reinforces the matrix, but also promotes the dispersion of MWCNTs. The reinforcement and synergetic nucleation effects of the high molecular weight resin and MWCNTs were also confirmed by dynamic mechanical analysis. 相似文献
9.
Multiwall carbon nanotubes (MWNT)/linear low density polyethylene (LLDPE) nanocomposites were studied in order to understand the stabilisation mechanism for their thermal and oxidative degradation. Thermogravimetry coupled with infrared evolved gas analysis and pyrolysis gas chromatography-mass spectrometry demonstrate that MWNT presence slightly delays thermal volatilisation (15-20 °C) without modification of thermal degradation mechanism. Whereas thermal oxidative degradation in air is delayed by about 100 °C independently from MWNT concentration in the range used here (0.5-3.0 wt.%). The stabilisation is due to formation of a thin protective film of MWNT/carbon char composite generated on the surface of the nanocomposites is shown by SEM and ATR FTIR of degradation residues. The film formation mechanism is discussed. 相似文献
10.
Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites 总被引:1,自引:0,他引:1
The degradation of polylactide (PLA)/Cloisite 30B nanocomposites under natural weathering was investigated as a function of clay loadings (1, 3 and 5 wt.%) for up to 130 days using Fourier transform infrared (FT-IR) spectroscopy, size exclusion chromatography (SEC), nanoindentation measurements, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). For comparative purposes, the neat PLA was also considered. The FT-IR results showed that the photo-oxidation mechanism of PLA was not modified in the presence of Cloisite 30B, but only the degradation rates were accelerated. Moreover, the photo-oxidative degradation of PLA nanocomposite samples led to the formation of vinyl unsaturation, carbonyls, anhydrides and hydroperoxides groups as a result of the occurrence of several chemical mechanisms simultaneously. The decrease of the weight-average molecular weight, and the number-average molecular weight associated with an enhanced polydispersity of the nanocomposite samples indicated that chain scission was the most prominent phenomenon in natural weathering. The thermal degradation of the PLA was faster in the presence of clay. Modulus and hardness measured by nanoindentation increased slightly with exposure time for both neat PLA and PLA nanocomposite samples; the increase is also a function of the clay content. Finally, the weathering effect on the morphology of exposed samples observed by SEM revealed that the fractured surfaces exhibited many voids and cracks. These defects were much more pronounced for the PLA nanocomposites. 相似文献
11.
Polylactide-based systems composed of an organoclay (Cloisite® 30B) and/or a compatibilizer (Exxelor VA1803) prepared by melt blending were investigated. Two types of not compatibilized nanocomposites containing 3 wt% or 10 wt% of the organoclay were studied to reveal the effect of the filler concentration on the nanostructure and physical properties of such systems. The 3 wt%-nanocomposite was also additionally compatibilized in order to improve the nanoclay dispersion. Neat polylactide and polylactide with the compatibilizer processed in similar conditions were used as reference samples. The X-ray investigations showed the presence of exfoliated nanostructure in 3 wt%-nanocomposite. Compatibilization of such system noticeably enhanced the degree of exfoliation of the organoclay. Viscoelastic spectra (DMTA) showed an increase of the storage and loss moduli with the increase of the organoclay content and dispersion. Dielectric properties of the nanocomposites show a weak influence of the nanoclay on segmental (αS) and local (β)-relaxations in PLA, except for the highest nanoclay content. Above Tg a strong increase of dc conductivity related to ionic species in the clay is observed. It gives rise also to the Maxwell-Wagner-Sillars interfacial polarization and both real and imaginary parts of ε strongly increase. In the temperature dependence of low frequency dielectric constant and mechanical moduli (at 1 Hz) an additional maximum around 80-90 °C is observed due to cold crystallization of PLA. 相似文献
12.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites. 相似文献
13.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites. 相似文献
14.
Syndiotactic polystyrene (sPS) composites filled with well-dispersed multi-walled carbon nanotubes (CNTs) were readily prepared through a coagulation method. Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction revealed the effect of CNTs on the polymorphism of sPS. When crystallized from the melted state, the formation of the β-form was always favored after CNT addition regardless of crystallization conditions (isothermal or non-isothermal). In the case where liquid nitrogen was used to quench the melt, the uncrystallized material that was not able to crystallize in the extremely short crystallization time crystallized in the α form upon subsequent cold crystallization. Regardless of the CNT content, the glass transition and equilibrium melting temperature of the sPS matrix were unchanged at ∼96 and 290 °C, respectively. With a gradual increase in CNT loading, the sPS crystallization rate initially increased but then reached a plateau value at high CNT concentrations because of the reduction in chain mobility. Moreover, the Avrami exponent was changed from 2.8 for samples at low CNT contents to 2.0 for samples with a CNT concentration above 0.1 wt.%, at which the rheological threshold was approached and a polymer-CNT hybrid network was formed. The enhanced crystallization kinetics was attributed to the high nucleating ability of CNTs to induce a transcrystalline layer (TCL) at its surface, as revealed by transmission electron microscopy. For composites with low levels of CNT, the growth of sPS spherulites in the bulk between CNTs prevailed. Provided that the CNT-related networks were developed, the two-dimensional growth of cylindrical TCL at the CNT surface became dominant and led to the expected Avrami exponent. 相似文献
15.
Multi-walled carbon nanotubes (MWNTs) reinforced polyimide nanocomposites were synthesized by in situ polymerization using 4,4′-oxydianilline, MWNTs, and pyromellitic dianhydride followed by casting, evaporation and thermal imidization. A homogeneous dispersion of chemically modified MWNTs was achieved in polyimide matrix as evidenced by scanning electron microscopy and atomic force microscopy. The incorporation of the modified MWNTs enhanced the mechanical properties of the polyimide due to the presence of strong interfacial interaction between the polymer matrix and the nanotubes in polymer composites. The resultant polyimide/MWNTs nanocomposites were electrically conductive with significant conductivity enhancement at 3 wt% MWNTs, which is favorable for many practical uses. 相似文献
16.
Biodegradable poly(butylene succinate-co-adipate) (PBSA)-based nanocomposites were successfully prepared. A commercial halloysite nanotube (HNT) and an organo-montmorillonite (denoted as 15A) served as reinforcing fillers. Scanning electron microscopy and transmission electron microscopy results confirmed the nano-scale dispersion of HNT and 15A in the composites. Differential scanning calorimetry results showed that 15A served as nucleating agent for PBSA crystallization, but HNT hardly affected the nucleation of PBSA. Both nanofillers assisted the isothermal crystallization of PBSA, with 15A demonstrating superior efficiency. Melting behavior study suggests that the presence of HNT or 15A hampered the melting-recrystallization process of the originally less stable crystals during heating scans. Thermogravimetric analyses revealed that 15A enhanced the thermal stability of PBSA in air environment, but HNT caused a decline at high loadings. The rigidity of PBSA, including Young’s/flexural moduli, evidently increased after the addition of HNT or 15A, with 15A showing higher enhancing efficiency than HNT at similar loadings. The flexural modulus increased up to 94% with 20 wt% in HNT and up to 48% with 5 wt% 15A loading. The rheological property measurements confirmed the achievement of pseudo-network structure at 5 wt% 15A loading, whereas the HNT-included system did not develop a network structure. 相似文献
17.
Enhancement of thermal properties of epoxy resins was achieved by incorporation of polybenzimidazole (PBI) fibermats filled with carbon nanomaterials, prepared by the solution electrospinning technique. Different type of carbon nanostructures (carbon nanotubes, graphite flakes, graphene nanoplatelets and carbon black) were compared as fillers in polybenzimidazole fibers. The carbon-PBI-fibermats showed remarkable thermal transport properties and therefore, they were studied as thermal reinforcement material for epoxy composites. Mechanical and thermal properties of produced composites were evaluated and the effectiveness of different types of carbon fillers examined. Results showed that the produced carbon filled fibermats can be used effectively as a thermal reinforcing material in epoxy resins, offering several advantages. 相似文献
18.
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs–g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT–g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G′) and loss modulus (G″) were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. 相似文献
19.
Johnny N. Martins Michaela Kersch Volker Altstädt Ricardo V.B. Oliveira 《Polymer Testing》2013,32(8):1511-1521
Nanocomposites of poly(vinylidene fluoride) (PVDF)/polyaniline (PAni)/carbon nanotubes (CNT) were prepared through melt blending using three different methods. The PVDF, CNT and PAni were added into the internal mixer at the same time in method I. In method II, PAni was polymerized in the presence of different amounts of CNT, and then added to PVDF. In method III, PAni was obtained with half the CNT content, and then added to PVDF with the other half of CNT. The morphology, rheological behavior and electrical conductivity of these systems were investigated through transmission electron microscopy (TEM) and combined electro-rheological measurements. As expected, the preparation method strongly influenced the final morphology of the nanocomposites, as shown by TEM analysis. The deformation and destruction of PAni-PAni and CNT-CNT bonds during the oscillatory shear experiments strongly affected the electrical conductivity, probably in two different ways: it breaks the PAni into smaller domains and also disrupts the CNT percolated network. Concluding, a good correlation between the electrical, flow behavior and preparation method could be achieved for PVDF/PAni/CNT nanocomposites, mainly by means of the combined electro-rheological measurements. 相似文献