首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A distributed fiber sensing system merging Mach–Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.  相似文献   

2.
The spectral interference of polarization modes in a highly birefringent (HB) fiber to measure temperature is analyzed theoretically and experimentally. A tandem configuration of a birefringent delay line and a sensing HB fiber is considered and the spectral interferograms are modelled for the known birefringence dispersion of the HB fiber under test. As the delay line, a birefringent quartz crystal of a suitable thickness is employed to resolve a channeled spectrum. The channeled spectra are recorded for different temperatures and the polarimetric sensitivity to temperature, determined in the spectral range from 500 to 850 nm, is decreasing with wavelength. It is demonstrated that the temperature sensing is possible using the wavelength interrogation, i.e., the position of a given interference maximum is temperature dependent. The temperature sensitivity of the HB fiber under test is −0.25 nm/K and the resolution is better than 0.5 K.  相似文献   

3.
Houhui Liang  Mingming Sun  Yongxing Jin 《Optik》2013,124(24):6676-6678
An optical fiber twist sensor based on Sagnac single-mode optic fiber interferometer is proposed. The stress-induced birefringence of single-mode optical fiber is obtained by applying a transverse force against a short length of singlemode fiber. A high sensitivity and resolution of the twist angle measurement of 0.19 nm/° and 0.002° is achieved experimentally, respectively. The proposed sensor is more convenient and simple than that of standard polarization-maintaining fibers.  相似文献   

4.
In this paper, enhancement of bandwidth of supercontinuum generated in a normal dispersion-flattened microstructured fiber by using compressed pulse is demonstrated experimentally and numerically. Using high-order soliton compression effect, the standard single mode fiber is used as a pulse compressor. The experimental measured ?10 dB spectral width is broadened from 75 nm to more than 140 nm by adding a 20 m long standard single mode fiber. Numerical analysis shows that using pulse compressed by a certain length fiber can increase the spectral bandwidth without making extra amplitude noise.  相似文献   

5.
A dual-wavelength fiber laser with a narrow-linewidth, based on a P-F fiber filter has been proposed. Polarization-maintaining fiber Bragg grating (PM-FBG) and a F-P fiber filter are introduced based on the traditional fiber laser. PM-FBG is used as the wavelength selection device. The fiber F-P filter consists of two optical couplers and a section of un-pumped erbium-doped fiber (EDF). Due to the delay of cavity and the loss generated by the EDF, the filter has comb spectral response. The incorporation of the fiber F-P filter leads to the suppression of undesirable modes. At the room temperature, under 980 nm LD pumped, the maximum output of the two wavelengths is respectively ?2.259 dBm and 0.568 dBm, with the 3-dB bandwidth separately 0.1 nm and 0.14 nm, realizing the narrow linewidth and dual-wavelength output.  相似文献   

6.
We investigate an asymmetric intensive fiber Bragg grating (FBG) defined Fabry–Perot (F–P) sensor system decoded by a multiple-path-matched Michelson interferometer. The interrogation of higher order reflection beams cannot only solve the problem of the degraded resolution induced by the spectral mismatch of the FBGs, but also amplify the effect of the fiber strain on the phase of the light. We demonstrate multiple reflection beams in the F–P cavity based on the concept of the FBG effective length for constructing respective interrogation interferometers, and present a cost function with optimized system parameters to improve noise properties. The performances of interrogating the second, third and fourth order reflection beams are compared in a strain sensing experiment arrangement. Under the condition of the same optical path length mismatch, the interrogation of the fourth order reflection beam can achieve 9.8 dB sensitivity enhancement and 3 dB resolution promotion compared with the result using the second order reflection beam.  相似文献   

7.
《Optik》2013,124(20):4300-4302
In order to gain ultra-broad and flat super-continuum (SC) spectrum, we propose and demonstrate a new scheme. By coupling a train of short pulses with 100 fs width and 16.2 mW average power generated by a mode-locked laser into the scheme – short photonic crystal fiber (PCF) combined with conventional fibers. The SC spectrum has 491 nm bandwidth at −15 dBm below the spectral peak with ±0.5 dBm uniformity 100 nm in only 0.45 m PCF. The spectral bandwidth generated in the scheme increases 292 nm than spectrum generated in the two conventional fibers, and increases 152 nm than spectrum generated in the three convention fibers.  相似文献   

8.
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of ~30–90 nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-Å electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at ~8.3 eV (~150 nm) and surface guided modes at 3.88 eV (~320 nm), which are in visible/ultra-violet spectral regime above GaN bandgap of ~3.3 eV (~375 nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below ~3.5 eV to the spectral regime further beyond.  相似文献   

9.
We propose an efficient approach to develop large-range liquid level sensors based on an extrinsic Fabry–Perot optical fibre interferometer with an all fused-silica structure and CO2 laser heating fusion bonding technology. The sensor exhibits signatures of a high sensitivity of 5.3 nm/kPa (36.6 nm/psi), a resolution of 6.8 Pa (9.9×10−4 psi) and an extreme low temperature dependence of 0.013 nm/°C. As a result, a high resolution of the water level measurement of approximately 0.7 mm on the length scale of 5 m and small errors of the water pressure measurement induced by the temperature dependence within 0.0025 kPa/°C (0.00036 psi/°C, water level 0.25 mm/°C) are achieved, thus providing useful applications for the detection of the large-range liquid level in harsh environments.  相似文献   

10.
A lensed patch cord probe has been made with a ball lens packaged in a metal cylinder. By simply placing a ball lens directly in front of a fiber patch cord, a compact and potentially disposable sampling probe for optical coherence tomography (OCT) could be implemented. To achieve a sufficiently long working distance and a good transverse resolution simultaneously, the proper ball lens diameter and the distance between the ball lens and the fiber patch cord were investigated. Experimentally, a working distance of up to 5.2 mm, 3 dB bandwidth of 2 mm, and transverse resolution of 16 μm were achieved. With the patch cord probe, a common path swept source OCT system was implemented and used to demonstrate the feasibility as the dedicated probe for dentistry.  相似文献   

11.
This review presents microspectrometers in silicon for the industry for measuring light in the visible range, using the Fabry–Perot interferometric technique. The microspectrometers are devices able to do the analysis of the individual spectral components in a given signal and are extensively used on spectroscopy. The analysis of the interaction between the matter and the radiated energy can found huge applications in the industrial sector. The microspectrometers can be divided on three types, determined by the dispersion element or the used approach and can be found microspectrometers based on prisms, gratings interferometers. Both types of microspectrometers can be used to analyze the spectral content ranging from the ultraviolet (UV, below 390 nm), passing into the visible region of the electromagnetic spectrum (VIS, 390–760 nm) up to the infrared (IR, above 760 nm). The microspectrometers in silicon are versatile microinstruments because silicon-compatible techniques can be used to assembly both the optical components with the readout and control electronics, thus resulting high-volume with high-reproducibility and low-cost batch fabrications. A compensation technique for minimizing the scattered light effects on interferometers was implemented and is also a contribution of this paper. Fabry–Perot microspectrometers for the visible range are discussed in depth for use in industrial applications.  相似文献   

12.
We demonstrate 330 MHz repetition rate operation in a ring cavity Yb:fiber laser with an innovative wavelength-division-multiplexing collimator to raise the repetition rate. The spectral bandwidth of the pulse is 30 nm and the dechirped pulse width is 48 fs. The output power is 70 mW with 600 mW, 975 nm pump laser diode.  相似文献   

13.
This paper covers a numerical analysis of supercontinuum spectrum generation in a piece of standard fiber by using as the pump noise-like pulses produced by a passively mode-locked fiber laser. An experimental study was also carried out, yielding results that support the numerical results. In the numerical study we estimated that the spectral extension of the generated supercontinuum reaches ~ 1000 nm, and that it presents a high flatness over a region of ~ 220 nm (1630 nm-1850 nm) when we use as the pump noise-like pulses with a wide optical bandwidth (~ 50 nm) and a peak power of ~ 2 kW. Experimentally, the output signal spectrum extends from ~ 1530 nm to at least 1750 nm and presents a high flatness over a region of 1640 nm to 1750 nm for the same value of numerical input power, 1750 nm being the upper limit of the optical spectrum analyzer. The numerical analysis presented here is thus an essential part to overcome the severe limitation in measuring capabilities and to understand the phenomena of supercontinuum generation, which is mainly related to Raman self-frequency shift. Finally, this work demonstrates the potential of noise-like pulses from a passively mode-locked fiber laser for broadband spectrum generation.  相似文献   

14.
A novel curvature sensor based on optical fiber Mach–Zehnder interferometer (MZI) is demonstrated. It consists of two spherical-shape structures and a long-period grating (LPG) in between. The experimental results show that the shift of the dip wavelength is almost linearly proportional to the change of curvature, and the curvature sensitivity are −22.144 nm/m−1 in the measurement range of 5.33–6.93 m−1, −28.225 nm/m−1 in the range of 6.93–8.43 m and −15.68 nm/m−1 in the range of 8.43–9.43 m−1, respectively. And the maximum curvature error caused by temperature is only −0.003 m−1/°C. The sensor exhibits the advantages of all-fiber structure, high mechanical strength, high curvature sensitivity and large measurement scales.  相似文献   

15.
Using standard single-mode fiber as high-order soliton compressor for broadening supercontinuum in an 80 m long all-normal dispersion photonic crystal fiber is investigated experimentally and numerically. An analytical formula for calculating proper fiber input power to generate the broadest supercontinuum is derived. The numerical results show that the formula is more accurate in high power level corresponding to the soliton order which is larger than two. The measured supercontinuum ? 20 dB bandwidth is broadened from 84.2 nm to 277.1 nm by using a 20 m long standard single-mode fiber without enhancing fiber input power. Numerical calculations of the amplitude noise in the output spectra show that using soliton compression effect can efficiently broaden the spectral bandwidth and not generate obvious noises.  相似文献   

16.
In this work, two all-fiber interferometric configurations based on suspended core fibers (SCF) are investigated. A Fabry–Pérot cavity (FPC) made of SCF spliced in-between segments of single-mode and hollow-core fiber is proposed. The interferometric signals are generated by the refractive-index mismatches between the two fibers in the splice region and at the end of the suspended-core fiber. An alternative sensing head configuration formed by the insertion of a length of SCF as a birefringence element in a Sagnac loop interferometer is also demonstrated. In this structure, the interferometric signals are generated by interfering two counter propagating beams with different polarization states which propagate through a length of SCF as a birefringence element. The sensitivity to pressure and temperature was determined for both configurations. The results show that the pressure sensitivities are ? 4.68 × 10? 5 nm/psi and 0.032 nm/psi for FPC and Sagnac loop interferometers, respectively. The temperature sensitivity of both structures has been obtained and the results have been discussed.  相似文献   

17.
A Ytterbium-doped linearly-polarized fiber laser is constructed with a polarization maintaining fiber Sagnac loop mirror. The fiber loop mirror made of polarization maintaining fiber coupler has a polarization dependent reflectivity, which provides the necessary polarization discrimination between the slow and fast axes. With a fiber Bragg grating written in normal polarization maintaining fiber as an output coupler, laser output of up to 5.6 W at 1070 nm is generated with a polarization extinction ratio of > 20 dB and an overall efficiency of 55%. The broadband polarization dependent reflection of the fiber loop mirror offers advantages of easy spectral tuning and simple linearly-polarized laser generation.  相似文献   

18.
A simple flat-top all-fiber comb filter based on two high birefringence fiber (HBF) Sagnac loop filters is presented. The proposed flat-top comb filter consists of two HBF Sagnac loop filters with two polarization controllers (PCs) and a fiber circulator. According to the theoretical analysis, with proper settings of the polarization state of the PCs, the comb filter can realize flat-top passband and the channel spacing also can be switched when the comb filter is convex spectrum. The 0.3 dB bandwidth of the flat-top passband is 0.49 nm with a free spectral range of 1.4 nm. The maximum extinction ratio is nearly 20 dB. The comb filter with switchable channel spacing can be obtained from 0.7 nm to 1.4 nm.  相似文献   

19.
We present a cascaded continuous-wave singly resonant optical parametric oscillator (SRO) delivering idler output in mid-IR and terahertz frequency range. The SRO was pumped by an ytterbium-doped fiber laser with 27 W linear polarization pump powers, and based on periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity. The PPMgLN is 50 mm long with 29.5 μm period. The idler power output at 3811 nm was obtained 2.6 W. The additional spectral components that have been attributed to cascaded optical parametric processes are described at increasing pump levels. Besides the initial signal component at about 1476.8 nm, further generated wavelengths with frequency shifts about 47 cm?1, 94 cm?1 and 104 cm?1 were observed. It was speculated that the idler waves lie in the terahertz (THz) domain from the observed results.  相似文献   

20.
Absorption cross sections of SO2 have been obtained in the 24 000–29 000 cm?1 spectral range (345–420 nm) with a Fourier transform spectrometer at a resolution of 2 cm?1. Pure SO2 samples were used and measurements were performed at room temperature (298 K) as well as at 318, 338 and 358 K. This is the first time that temperature effects in this spectral region are reported and investigated. This paper is the first of a series that will report on measurements of the absorption cross section of SO2 in the UV/visible region at a higher than previously reported resolution and that will investigate temperature effects in support of tropospheric, stratospheric and astrophysical or planetary applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号