首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electrophoresis》2017,38(9-10):1353-1365
Capillary and microfluidic chip electrophoresis technologies are heavily utilized for development, characterization, release, and stability testing of biopharmaceuticals. Within the biopharmaceutical industry, CE‐SDS and M‐CGE are commonly used for purity determination by separation and quantitation of size‐based variants. M‐CGE is used primarily as an R&D tool for product and process development, while cGMP release and stability testing applications are commonly reserved for CE‐SDS. This paper describes the establishment of an M‐CGE platform method to be used for R&D and cGMP applications, including release and stability testing, for monoclonal antibodies. The M‐CGE platform method enables testing for product development support and cGMP release and stability using the same method, and utilization of one CE technology for the entire lifecycle of a biopharmaceutical product. Critical method parameters were identified, and the analytical design space of those critical parameters was defined using design of experiments (DOE) studies. Once defined through DOE studies, the method design space was validated according to ICH Q2 (R1) guidelines. Additional molecules of the same validated class were verified for use in the method by experimental confirmation of accuracy, specificity, and stability indicating capabilities. The platform method model facilitates rapid utilization of the method in development and GMP testing environments, and eliminates the need for individual validations for assets of the same class entering early stage development.  相似文献   

2.
An international project team (including members from US, Canada and UK) has been formed from a number of interested biopharmaceutical companies and regulatory authorities to conduct a cross-organisation collaboration exercise. The results from this exercise demonstrate the robustness of CE-SDS across eight different organisations that used instruments of the same equipment model, the same reagents, and the same methodology. Data generated from the analysis of a series of molecular weight markers showed very good precision with regards to relative migration time (RMT) both within and between organisations. The apparent molecular weight of bovine serum albumin (BSA) was measured with good precision to within approximately 2% RSD across the participants. A representative IgG sample showed similar results with regards to relative migration time of its 3 main components, IgG Light Chain, IgG Non-glycosylated Heavy Chain, and IgG Heavy Chain. Fractional peak area for each peak also showed good agreement, with less than 9% RSD for all peaks. This exercise will facilitate both increased regulatory and industrial opinion of CE for biopharmaceutical analysis.CE in the Biotechnology & Pharmaceutical Industries: 7th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides and Small Molecules, Montreal, Canada, August 12–16, 2005  相似文献   

3.
Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.  相似文献   

4.
Li FA  Wang CH  Her GR 《Electrophoresis》2007,28(8):1265-1273
Using a wire-assisted epoxy-fixing method, a sheathless CE/MS interface on a poly-(methyl methacrylate) (PMMA) CE chip has been developed. The sheathless chip-CE/MS interface utilized a tapered fused-silica tip and the electrical connection was achieved through a layered coating of conductive rubber. The wire-assisted method provided facile alignment of channels between the PMMA CE chip and an external capillary sprayer without the need for micromachining. Because the wire was in the channel during fixing, the risk of channel blockage by the epoxy was avoided. This chip CE device has minimal dead volume because the interstitial spaces were filled by a fast-fixing epoxy resin. The performance of the chip-CE-ESI-MS device was demonstrated with the analysis of peptide mixtures.  相似文献   

5.
CE SDS gel technique offers many advantages over the traditional labor-intensive SDS PAGE slab gel technology. The CE-based method has increasingly been applied to many protein analysis applications. Specific examples are provided for monoclonal antibody (mAb), though the technique can be adapted to many other therapeutic protein products. Applications of CE SDS gel method using Beckman PA800 with UV detection are presented and discussed with respect to mAb analysis, such as purity, quantitation of non-glycosylated heavy chain (NGHC) peak, identity, and stability. The stability of mAb is evaluated with respect to formulation buffer, accelerated temperature stress, UV light-exposure, and high pH conditions. Both reducing and non-reducing CE SDS gel conditions were applied and optimized to characterize mAb products. The data presented provides a "taste" of what CE SDS gel method can do to support the development of mAb products from early clone screening for product quality to the final product characterization. Since the CE SDS gel method is automatable, quantitative, robust, and allows for relatively high throughput, it provides both great analytical capacity and product coverage for a wide spectrum of protein product development in biopharmaceutical industry.  相似文献   

6.
The potential of CE with native fluorescence detection (Flu) for the profiling of the therapeutic protein erythropoietin (EPO) was studied. EPO is a highly heterogeneous glycoprotein comprising a large number of isoforms. CE was applied to induce separation among the various glycoforms. Native Flu of EPO provided high detection selectivity yielding good signal‐to‐noise ratios and stable baselines, particularly when compared to conventional UV absorbance detection. In order to enhance EPO isoform resolution, CE was performed using a capillary with a neutral coating in combination with a simple BGE of 2.0 M acetic acid (pH 2.1). CE‐Flu analysis of the EPO biological reference preparation of the European Pharmacopeia resulted in a highly detailed glycoform profile. Migration time RSDs for selected EPO isoforms were less than 0.22% and 0.80% for intraday and interday repeatability, respectively. RSDs for relative peak intensity of the major EPO isoforms were less than 3%. The achieved resolution, migration time stability, and sensitivity allowed discrimination of different EPO products (EPO‐α and EPO‐β) based on the recorded glycoform pattern. The developed CE‐Flu method is relatively straightforward, and shows potential for quality control in biopharmaceutical production.  相似文献   

7.
Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is an analytical method to assess the purity of proteins, commonly applied to monoclonal antibodies (mAbs) in the biopharmaceutical industry. To address the need to standardize the CE-SDS method in the pharmaceutical industry and to enhance the confidence in method transfer between laboratories operating different commercial capillary electrophoresis (CE) instrument platforms, an interlaboratory CE-SDS method validation was organized involving 13 laboratories in 13 companies on four different types of commercial capillary electrophoresis instruments. In the validation, a commercial mAb therapeutic was used as the sample. The validation process followed the analytical guidelines set by the ICH guidelines (International Conference for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use). The method's precision, accuracy, linearity and range, and limit of quantitation (LOQ) were validated in the study. Variations of all the parameters validated in the study passed the pre-set criteria defined at the beginning of the study. The definition was based on previously published works and the intended application purpose of the CE-SDS method for mAbs. The study proved that the CE-SDS method fits its intended application purpose as a size impurity assay and size heterogeneity characterization assay for mAb therapeutic products. This study is the first time a CE-SDS method is validated by multiple laboratories using different commercial CE instrument platforms and on a commercial mAb therapeutic. Its results will enhance the confidence of the biopharmaceutical industry to develop CE-SDS methods and transfer CE-SDS methods between different laboratories.  相似文献   

8.
We introduce here a method for continuous intact cell detection and viability determination of individual trypan blue stained cells by CE with ultraviolet–visible dual‐wavelength detection. To avoid cell aggregation or damage during electrophoresis, cells after staining were fixed with 4% formaldehyde and were continuously introduced into the capillary by EOF. The absorbance of a cell at 590 nm was used to determine its viability. An absorbance of two milli‐absorbance unit at 590 nm was the clear cut‐off point for living and dead Hela cells in our experiments. Good viability correlation between the conventional trypan blue staining assay and our established CE method (correlation coefficient, R2=0.9623) was demonstrated by analysis of cell mixtures with varying proportions of living and dead cells. The CE method was also used to analyze the cytotoxicity of methylmercury, and the results were in good agreement with the trypan blue staining assay and 3‐(4,5‐dimethyl‐2‐thiazyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide methods. Compared with the 3‐(4,5‐dimethyl‐2‐thiazyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide method, our established CE method can be easily automated to report cell viability based on the state of individual cells. Tedious manual cell counting and human error due to investigator bias can be avoided by using this method.  相似文献   

9.
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.  相似文献   

10.
Fast, selective, and sensitive analysis of inorganic anions is compulsory for the identification of explosives in post-blast or environmental samples. For the last twenty years, capillary electrophoresis (CE) has become a valuable alternative to ion chromatography (IC) for the analysis of inorganic-based explosives because of its low running costs and its simplicity of use. This article focuses on the development and validation of a CE method for the simultaneous analysis of 10 anions (chloride, nitrite, nitrate, thiosulphate, perchlorate, chlorate, thiocyanate, carbonate, sulphate, and phosphate) which can be found in post-blast residues, plus for the first time azide anion, possibly present in the composition of detonators, and the internal standard (formate) in 20 min total runtime. Intermediate precisions were 2.11% for normalized areas and 0.72% for normalized migration times. Limits of detection close to 0.5 ppm for all anions were obtained with the use of preconcentration techniques, thanks to a fast and simple sample preparation allowing the analysis of a large variety of matrices with the developed generic CE method. The matrix effects were statistically studied for the first time in the explosive field for different matrices, containing interfering anions and cations, sometimes at high levels. In fact, no significant matrix effect occurred (tests with blank matrix extracts of soil, cloth, glass, plastic, paper, cotton, and metal). Finally, analyses of real post-blast residues and real detonator extracts were performed. The CE results were compared with those obtained with the IC method used routinely and showed excellent correlation.  相似文献   

11.
CE‐SDS has been implemented in the biopharmaceutical industry and is being used for the characterization of therapeutic proteins in most Biological License Applications currently submitted. An overview is presented on the separation mechanism, methodology, and good working practices/best practices. The CE‐SDS platform method development and validation are discussed and typical scientifically and regulatory issues and troubleshooting situations are highlighted.  相似文献   

12.
A method using capillary electrophoresis with direct UV detection has been developed and validated for the determination of Turkey Red Oil (sulfonated castor oil). The highest performance with respect to separation efficiency and analysis time was achieved with 30 mM Tris (pH 8.0) buffer containing 7.5 mM HP-β-CD. The feasibility of the proposed CE method for the analysis of Turkey Red Oil surfactant in industrial water samples is demonstrated. Spiking of real samples gave recoveries between 90 and 106%. The CE results were compared with that obtained by GC-MS. It was concluded that CE can be a good alternative for fast determination of Turkey Red Oil component distribution in industrial process waters with no sample preparation other than dilution. However, the method sensitivity is not satisfactory for monitoring surfactant level in a waste effluent stream.  相似文献   

13.
林长缨  丁晓静 《色谱》2020,38(9):999-1012
自1989年出现商品化的仪器以来,毛细管电泳(CE)技术在多个应用领域都取得了长足的进步与发展,重复性和准确性方面也有很大提升。能力验证样品分析的满意结果也显示了CE具备法规要求的准确定量能力。在疾病预防控制领域(简称"疾控")CE也展现出很多独具特色的应用,成为不可或缺的技术之一。在聚合酶链式反应产物分析、核酸序列测定、DNA变异和分型分析、食源性致病微生物分析及疫苗分析等工作中CE发挥了重要作用。应对突发疫情或公共卫生事件如食物中毒时,除了通过非靶标分析尽快锁定目标物外,还需要对大量样品做出快速而准确的分析,高通量和高灵敏的CE就十分适合解决这一问题。在公共卫生理化检验以确保食品、保健食品、特殊医学用途食品、化妆品和消毒产品等的安全中,CE也发挥了不可或缺的作用。作为一种使用较少危险化学品的环境友好方法,在需要按照标准或规范进行的疾控实验室常规检测中,CE仍受制于标准方法的缺失,未能发挥其应有的作用。但简单、快速、经济、耐用、高效的CE分离一旦与高灵敏通用检测器联用,必将更加从容地应对疾控领域中的各种挑战,发挥更大的作用。本文综述了2010~2019年CE在疾控领域的应用,分析了CE在疾控领域发展的机遇和挑战,对CE在疾控领域的发展前景进行了展望。  相似文献   

14.
Ultra-rapid analysis of nitrate and nitrite by capillary electrophoresis   总被引:3,自引:0,他引:3  
Rapid analysis of nitrate and nitrite by capillary electrophoresis (CE) has been limited by the ions' very similar electrophoretic mobilities. With a pKa of 3.15, the mobility of nitrite can be selectively reduced using a low pH buffer in CE. A much shorter capillary can be used and separation voltages can be increased. With this method, nitrate and nitrite are separated in just over 10 s. This is roughly 20 times faster than current separation methods. Direct UV detection at 214 nm was employed and offered sub microM detection limits. Total analysis time (pre-rinse, injection, and separation) was less than 1 min, making this method ideal for high-throughput analysis.  相似文献   

15.
This paper aimed to build up a sensitive CE method for the analysis of tetracyclines (TCs) antibiotics (including tetracycline, chlorotetracycline, oxytetracycline, and doxycycline) with conventional UV detection. Here, the large volume sample stacking was applied to achieve in capillary preconcentration of the targets. To achieve large volume sample stacking, the essential step was a large volume of sample (around 83.3% of total capillary length from inlet to detection window) hydrodynamically loaded. Then, the reserved voltage was added in order to push the sample matrix out of the capillary. Due to different pH between sample solution (pH 4.6) and BGE (pH 11.0), the cationic TCs would turn into negatively charged while the sample matrix was removing from the capillary. Finally, the anionic TCs were stacked at the inlet for the subsequent separation. Although the loss of sample existed during their charge transformation, the LODs could be improved around 40 times than that obtained by normal hydrodynamic injection CE method. Here, the LODs were in the range of 8.1–14.5 μg/L, around 10 ppb that close to the level by electrochemiluminescence or laser‐induced fluorescence detection of TCs by CE. The precision was characterized by RSDs of migration times and peak areas, which were in the range of 0.19–0.24% and 0.97–2.54%, respectively. The recoveries of the developed method were in the range of 95–112% by spiking TCs in the tap water. The proposed inline preconcentration CE method could be a simple, speed, and sensitive method for the quantitative analysis of TCs.  相似文献   

16.
CE is considered as a powerful technique in biopharmaceutical industry, owing to its inherent advantages such as high resolution, efficient separation, and its flexibility to couple with high‐sensitive detecting methods. Present review provides a summary of the applications of CE‐based methods in the quality control of biopharmaceuticals according to the papers published between 1994 and July 2014. This article is divided into the sections based on different CE modes applied in the analysis of biopharmaceuticals and gives detailed information about the employed experimental conditions. At the end some overall conclusions and perspectives are given.  相似文献   

17.
Summary Solid-phase extraction (SPE) was coupled at-line to capillary electrophoresis (CE) for the determination of a series of basic test compounds (i. e. tricyclic antidepressants). The analysis was performed using a non-aqueous CE buffer, which resulted in baseline separation of all test compounds. This is in marked contrast with CE using aqueous buffers where hardly any separation was obtained either with or without micelles. The SPE procedure was used to remove simultaneously most of the water from the sample, because no direct analysis of aqueous samples is possible when a non-aqueous CE buffer is used. With the present method the antidepressants can be determined in both urine and serum. Analyte detectability is increased up to 10-fold due to trace enrichment during the extraction process; the limits of detection (LODs; UV 214 nm) are 30–300 ng mL−1 in urine and 300–1000 ng mL−1 in serum. TheRSD values (n=5) of the within-day and between-day precision are below 9% and 11% respectively. Therefore, the present procedure can be used for drug monitoring.  相似文献   

18.
Biopharmaceutical production takes place in complex processes which should be thoroughly understood. Therefore, the iConsensus project focuses on developing a monitoring platform integrating several process analytical technology tools for integrated, automated monitoring of the biopharmaceutical process. Water-soluble vitamin monitoring using (microchip) capillary electrophoresis (CE) is part of this platform. This work comprises the development of conventional CE methods as the first part towards integrated vitamin monitoring. The vitamins were divided based on their physical–chemical properties to develop two robust methods. Previously, a method for the analysis of cationic vitamins (pyridoxine, pyridoxal, pyridoxamine, thiamine and nicotinamide) in cell culture medium was developed. This work focused on the development of a micellar electrokinetic chromatography method for anionic and neutral vitamins (riboflavin, d -calcium pantothenate, biotin, folic acid, cyanocobalamin and ascorbic acid). By employing multivariate design of experiments, the background electrolyte (BGE) could be optimised within one experiment testing only 11 BGEs. The optimised BGE conditions were 200 mM borate with 77 mM sodium dodecyl sulphate at a pH of 8.6. Using this BGE, all above-mentioned cationic, anionic and neutral vitamins could be separated in clean samples. In cell culture medium, most anionic and neutral vitamins could be separated. Combining the two methods allows for analysis of cationic, anionic and neutral vitamins in cell culture medium samples. The next step towards integrated vitamin monitoring includes transfer to microchip CE. Due to the lack of fast and reliable methods for vitamin monitoring, the developed capillary methods could be valuable as stand-alone at-line process analytical technology solutions as well.  相似文献   

19.
All nuclear spectroscopy systems, whether measuring charged particles, X-rays, or gamma-rays, exhibit dead time losses during the counting process due to pulse processing in the electronics. Several techniques have been employed in an effort to reduce the effects of dead time losses on a spectroscopy system including live time clocks and loss-free counting modules. Live time extension techniques give accurate results when measuring samples in which the activity remains roughly constant during the measuring process (i.e., the dead time does not change significantly during a single measurement period). The loss-free counting method of correcting for dead time losses, as introduced by HARMS and improved by WESTPHAL (US Patent No. 4,476,384) give better results than live time extension techniques when the counting rate changes significantly during the measurement. However, loss-free counting methods are limited by the fact that an estimation of the uncertainty associated with the spectral counts can not be easily determined, because the corrected data no longer obeys Poisson statistics. Therefore, accurate analysis of the spectral data including the uncertainty calculations is difficult to achieve. The Ortec® DSPEC PLUS implements an improved zero dead time method that accurately predicts the uncertainty from counting statistics and overcomes the limitations of previous loss-free counting methods. The uncertainty in the dead-time corrected spectrum is calculated and stored with the spectral data (Patent Pending). The GammaVision-32® analysis algorithm has been improved to propagate this uncertainty through the activity calculation. Two experiments are set up to verify these innovations. The experiments show that the new method gives the same reported activity and associated uncertainties as the well-proven Gedcke-Hale live time clock. It is thus shown that over a wide range of dead times the new ZDT method tracks the true counting rate as if it had zero dead time, and yields an accurate estimation of the statistical uncertainty in the reported counts.  相似文献   

20.
An easy, selective, and sensitive method has been developed for the determination of enrofloxacin (ENR) and its main active metabolite, ciprofloxacin (CIP), in raw bovine milk using CE with UV detection at 268 nm. Milk samples were prepared by a clean‐up/extraction procedure based on protein precipitation with hydrochloride acid followed by being defatted by centrifugation and SPE using a hydrophilic‐lipophilic balance cartridge. Optimum separation was obtained using a 50 mM phosphoric acid at pH 8.4 and the total electrophoretic run time was 6 min. Sample preparation by this method yielded clean extracts with quantitative and consistent mean recoveries from 89 to 97% for CIP and from 93 to 98% for ENR. LODs obtained were lower to the maximum residue limits for these fluoroquinolones. The precision of the ensuing method is acceptable; thus, the RSD for peak area and migration time was less than 8.5 and 0.5% for CIP and 9.9 and 0.9% for ENR, respectively. The results showed that the proposed method was efficient showing good recoveries, sensitivity, and precision for the studied compounds and could be satisfactorily applied in routine analysis for the monitoring of ENR and CIP residues in milk, due to its ruggedness and feasibility demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号