首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a renewable tyrosinase-based biosensor was developed for the detection of catechol, using a carbon black paste electrode, without any mediator. The effect of pH, type of electrolyte, and amount of tyrosinase enzyme were explored for optimum analytical performance. The best-performing biosensor in amperometric experiments at potential −0.2 V vs. Ag/AgCl (3 mol L−1 KCl) was obtained using a 0.1 mol L−1 phosphate buffer solution (pH 7.0) as electrolyte. Under optimized conditions, the proposed biosensor had two concentration linear ranges from 5.0×10−9 to 4.8×10−8 and from 4.8×10−8 to 8.5×10−6 mol L−1 and a limit of detection of 1.5×10−9 mol L−1. The apparent Michaelis-Menten constant ( ) was calculated by the amperometric method, and the obtained value was 1.2×10−5 mol L−1 whose result was similar when compared with other studies previously. The biosensor was applied in river water samples, and the results were very satisfactory, with recoveries near 100 %. In addition, the response of this biosensor for different compounds, taking into account their molecular structures was investigated and the results obtained showed no interference with the response potential of catechol. The electrochemical biosensor developed in this work can be considered highly advantageous because it does not require the use of a mediator (direct detection) for electrochemical response, and also because it is based on a low-cost materials that can be used with success to immobilise other enzymes and/or biomolecules.  相似文献   

2.
The electrochemical behavior of nandrolone phenylpropionate (NP) at a hanging mercury drop electrode (HMDE) was investigated. The adsorption phenomena were observed by linear sweep voltammetry in NaOH. The electrode reaction was found to be a totally irreversible reduction of the adsorbed NP. In 1 × 10−7 mol/L NaOH, the detection limit and the linear range are 5 × 10−10 and 8 × 10−10–5 × 10−7 mol/L, respectively. The relative standard deviation of the method is 1.6 % for 1.7 × 10−7 mol/L NP. The method was applied to the determination of NP in clinical ampuls.  相似文献   

3.
《Electroanalysis》2018,30(2):336-344
Electrochemical reduction of irinotecan was investigated on a static mercury drop electrode using square‐wave voltammetry. The mechanism of irinotecan electroreduction is a complex, pH‐dependent, quasireversible process and includes the transfer of two electrons and two protons. In acidic medium, the first electron transfer reaction is followed by the chemical reaction, and the product of this chemical reaction undergoes further electrochemical reduction at more negative potentials. Both irinotecan and the product of its reduction adsorb on the mercury electrode surface. Based on the adsorptive character of irinotecan, a new adsorptive stripping square‐wave voltammetric method for its electroanalytical determination has been proposed. The voltammetric response could be used to determine irinotecan in the concentration range from 1×10−7 mol/L to 1.5×10−6 mol/L and from 5×10−9 mol/L to 1.2×10−7 mol/L, if the accumulation time is 20 s and 300 s, respectively. The calculated limit of detection for irinotecan was found to be 8.7×10−9 mol/L (if tacc=300 s).  相似文献   

4.
Herein, an organometallic Au(III) catalyst was easily prepared via self-assembly method using chloroauric acid (HAuCl4) and cetyltrimethylammonium bromide (CTAB). The electrode fabricated by the catalyst not only shows extended anodic potential window compared to that of Au nanoparticle-based electrode, but also possess the high electrocatalytic activity in the selective oxidation of Ochratoxin A. Under optimized conditions, the modified electrode exhibits a wide linearity range from 1.0×10−7 to 1.0×10−5 mol/L and a low detection limit of 2.9×10−8 mol/L (S/N=3). Furthermore, the electrochemical sensor possesses good recoveries between 93.5 % and 98.2 % in real sample analysis, indicating high accuracy in real sample analysis.  相似文献   

5.
《Electroanalysis》2017,29(11):2579-2590
In this study, an electrochemical sensor was developed and used for selective determination of bisfenol‐A (BPA) by integrating sol‐gel technique and multi‐walled carbon nanotubes (MWCNTs) modified paste electrode. BPA bounded by covalently to isocyanatopropyl‐triethoxy silane (ICPTS) was synthesized as a new precursor (BPA‐ICPTS) and then BPA‐imprinted polymer (BPA‐IP) sol‐gel was prepared by using tetramethoxysilane (TMOS) and BPA‐ICPTS. Non‐imprinted polymer (NIP) sol‐gel was obtained by using TMOS and (3‐Aminopropyl) triethoxysilane. Both BPA‐IP and NIP sol‐gels were characterized by nitrogen adsorption‐desorption analysis, FTIR, SEM, particle size analyzer and optical microscope. Carbon paste sensor electrode was fabricated by mixing the newly synthesized BPA‐IP with MWCNTs, graphite powder and paraffin oil. The electrochemical characterization of the sensor electrode was achieved with cyclic and differential pulse voltammetric techniques. The response of the developed sensor under the most proper conditions was linear in BPA concentration range from 4.0×10−9 to 1.0×10−7 mol L−1 and 5.0×10−7 to 5.0×10−5 mol L−1 and the detection limit was 4.4×10−9 mol L−1. The results unclosed that the proposed sensor displayed high sensitivity and selectivity, superior electrochemical performance and rapid response to BPA.  相似文献   

6.
尉艳  李茂国方宾 《中国化学》2007,25(11):1622-1626
The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.  相似文献   

7.
《Electroanalysis》2018,30(1):101-108
The present work describes the evaluation of microfluidic electroanalytical devices constructed by a 3D printer using ABS (acrylonitrile butadiene styrene) polymer combined with cotton threads as microchannels. Screen‐printed carbon electrodes (SPCEs) were used as electrochemical detector for amperometric determination of gallic and caffeic acid in wine samples. Using optimal experimental conditions (flow rate of 0.71 μL s−1, applied potential of +0.30 V and volume of injection of 2.0 μL) the proposed method presented a linear response for a concentration range of 5.0×10−6 to 1.0×10−3 mol L−1. The detection limits for gallic and caffeic acid were found to 1.5×10−6 mol L−1 and 8.0×10−7 mol L−1, respectively, with a sample throughput of 43 h−1. The achieved results are in agreement with those found using the official Folin‐Ciocaulteu method.  相似文献   

8.
《Analytical letters》2012,45(3):507-520
Abstract

This work is aimed at the elucidation of the oxidation mechanism for the tricyclic antidepressant imipramine using electrochemical and quantum chemical studies. The excellent response obtained with the use of a rigid graphite‐polyurethane composite electrode (GPU) provided the development of a new electroanalytical methodology, in 0.10 mol/L BR buffer (pH 7.0), employing square wave voltammetry. Detection and quantification limits of 4.60×10?9 mol/L(1.5 µg L) and 3.04×10?7 mol/L (96 µg L) were obtained. This methodology was tested in a commercial formulation of Tofranil® and excellent recoveries were achieved by electrochemical (97.60±0.90%) and spectrophotometrical (87.10±0.90%) methods.  相似文献   

9.
A multi-wall carbon nanotubes (MWNTs)-Nafion film-coated glassy carbon electrode (GCE) was fabricated and the electrochemical behavior of ofloxacin on the MWNTs-Nafion film-coated GCE were investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The oxidation peak current of ofloxacin increased significantly on the MWNTs-Nafion film modified GCE compared with that using a bare GCE. This nano-structured film electrode exhibited excellent enhancement effects on the electrochemical oxidation of ofloxacin. A well-defined oxidation peak attributed to ofloxacin was observed at 0.97 V and was applied to the determination of ofloxacin. The oxidation peak current was proportional to ofloxacin concentration in the ranges 1.0 × 10−8 to 1.0 × 10−6 mol/L and 1.0 × 10−6 to 2.0 × 10−5 mol/L. A detection limit of 8.0 × 10−9 mol/L was obtained for 400 s accumulation at open circuit (S/N = 3). This method for the detection of ofloxacin in human urine was satisfactory. __________ Translated from Chinese Journal of Applied Chemistry, 2007, 24(5): 540–545 [译自: 应用化学]  相似文献   

10.
Herein, a reagentless electrochemical DNA sensor based on a self-powered DNA machine for detecting survivin mRNA in cells is developed. The metal-organic framework (MOFs) loaded with DNAzyme cofactors (Mn2+) is coated on PTFE rods on the Au surface and assembled with the DNA walker, overcoming the complexity of adding metal ions from the external environment. In addition, the orbital chain is modified by a synthetic bisferrocene signal marker, which further enables signal amplification. Under optimal conditions, the sensor exhibits a range from 1×10−14 mol/L to 1×10−8 mol/L with a detection limit (S/N=3) of 1.28 fM.  相似文献   

11.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

12.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

13.
The electrooxidation of L -dopa at GC electrode was studied by in situ UV-vis spectroelectrochemistry (SEC) and cyclic voltammetry. The mechanism of electrooxidation and some reaction parameters were obtained. The results showed that the whole electrooxidation reaction of L -dopa at glassy carbon (GC) electrode was an irreversible electrochemical process followed by a chemical reaction in neutral solution (EC mechanism). The spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential E0=228 mV, the apparent electron-transfer number of the electrooxidation reaction αn=0.376 (R=0.99, SD=0.26), the standard electrochemical rate constant k0=(3.93±0.12)×104 cm s−1 (SD=1.02×10−2), and the formation equilibrium constant of the following chemical reaction kc=(5.38±0.34)×10−1 s−1 (SD=1.02×10−2) were also obtained.  相似文献   

14.
A mesoporous zirconia modified carbon paste electrode was developed for electrochemical investigations of methyl parathion (MP, Phen‐NO2). The significant increase of the peak currents and the improvement of the redox peak potential indicate that mesoporous zirconia facilitates the electronic transfer of MP. The oxidation peak current was proportional to the MP concentration in the range from 1.0×10−8 to 1.0×10−5 mol L−1 with a detection limit of 4.6×10−9 mol L−1 (S/N=3) after accumulation under open‐circuit for 210 s. The proposed method was successfully applied to the determination of MP in apple samples.  相似文献   

15.
In this paper, nichrome was adopted as a substrate, to fabricate the pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE). The electrochemical behaviors and diffusion mechanisms of three dihydroxybenzene isomers at the electrode were carefully investigated. The effect of pH on oxidation peak current was also detailedly explained. The results were shown that oxidation peak current not only related to the reaction of electroactive materials at the working electrode, but also depended on the reaction variable of reduction at the auxiliary electrode. The oxidation peaks of hydroquinone (HQ), catechol (CC) and resorcinol (RC) located at 0.181 V, 0.288 V and 0.736 V. For CC, RC and HQ, the oxidation peak currents were linear to the concentrations at the range of 5.0 × 10?6~5.0 × 10?4 mol/L, 3.0 × 10?6~5.0 × 10?4 mol/L and 4.0 × 10?6~4.0 × 10?4 mol/L with the detection limits of 2.0 × 10?7 mol/L, 1.2 × 10?7 mol/L and 1.2 × 10?7 mol/L, respectively. The proposed method was successfully applied in the simultaneous determination of dihydroxybenzene isomers in artificial sewage samples with satisfactory results.  相似文献   

16.
Two sensitive and selective potentiometric sensors based on zinc-iron layered double hydroxides/multiwalled carbon nanotubes (Zn−Fe LDH/MWCNTs) (sensor I) and graphene/multiwalled carbon nanotubes (Gr/MWCNTs) (sensor II) nanocomposites were developed for benzydamine hydrochloride (Benz) determination. The investigated sensors displayed excellent Nernstian slopes 58.5±0.7 and 59.5±0.5 mV decade−1, detection limits 8.3×10−7 and 1.9×10−7 mol L−1, long lifetimes, adequate selectivity, high chemical, and thermal stability within pH range of 2.4–8.5 for sensors І and ІІ, respectively. The surface morphology of sensors was analyzed using a Transmission Electron Microscope (TEM). The analytical method was efficiently implemented for Benz determination in biological fluids and surface water samples.  相似文献   

17.
Since to the best of our knowledge, there is no potentiometric sensors based on carbon paste electrodes were proposed for the potentiometric determination of molybdenum(VI) ion. In this study, 2,2′-(propane-1,3-diylbis(oxy))dibenzoic acid (PBODBA) was synthesized and used as modifier in the fabrication of carbon paste electrode (CPE) for the quantification of molybdenum(VI). The developed electrodes I and II showed hexavalent Nernstian response of 9.80±0.05 and 9.90±0.08 mV decade−1 over the concentration ranges of 1.0×10−7–1.0×10−3 and 1.0×10−8–1.0×10−3 mol L−1, respectively. The electrodes showed good selectivity for Mo(VI). The modified electrodes were applied for the determination of Mo(VI) concentration in masscuaje agricultural fertilizer and spiked juice extractions containing several metals.  相似文献   

18.
《Electroanalysis》2017,29(7):1794-1804
The sensitivity enhancing properties of sodium dodecyl sulphate (SDS) and multi‐walled carbon nanotubes (MWCNTs) were associated to construct a nanosensor based on carbon paste electrode (CPE) by adopting drop cast method. The drop cast method makes use of minimum modifier and the entire modified surface of the sensor is available for the analyte. Surface characterization of the electrodes was carried out using FE‐SEM and EDX. EIS was used for the electrochemical characterization. We report for the first time the electrochemical analysis based on the oxidation of the ‐OH group of a novel drug, alpha‐hydrazinonitroalkene ( I ) which was found to have antibacterial and antimicrobial properties. The electron transfer kinetic parameters such as the charge transfer coefficient α and heterogeneous rate constant k′ were calculated and they have been found to be 0.64 and 9.62 × 10−2 cm s−1 respectively. The linear response ranges for ( I ) obtained at this sensor are 1.0 × 10−7 M − 7.0 × 10−7 M and 1.0 × 10−6 M – 4.5 × 10−5 M with a detection limit of (7.03 ± 0.41) × 10−8 M (S/N=3). The interference study suggested that the sensor was free from 1000‐fold excess of UA in the determination of ( I ). It was important to note that the sensor completely eliminated Ascorbic acid (AA) signal which offered a significant analytical advantage for the determination of the drug at this sensor. The practical usefulness of the modified sensor was demonstrated by the analysis of ( I ) in blood serum.  相似文献   

19.
《Electroanalysis》2017,29(4):1141-1146
A novel and sensitive voltammetric method was proposed for separation and determination of glutathione (GSH) and L‐tyrosine (Tyr) at acetylene black and chitosan modified glassy carbon electrode (AB‐CS/GCE). By introducing chlorogenic acid (CGA) as a new electrocatalytic mediator, GSH could be detected at much lower potential with symmetric peak shape. Acetylene black and chitosan composite served as current signal amplifier for sensitive detection. The electrochemical behavior of GSH and Tyr in the presence of CGA was studied at AB‐CS/GCE and complete separation of anodic peaks was achieved. Under the optimum conditions, the electrocatalytic oxidation peak current of GSH showed a linear dependence on its concentration in the ranges of 2.0×10−7‐4.0×10−5 M with the detection limit of 5.8×10−8 M (S/N=3), while the oxidation peak current of Tyr was linear to its concentration from 2.5×10−6 to 4.3×10−4 M with the detection limit of 9.2×10−7 M (S/N=3) by differential pulse voltammetry (DPV). The established method has been applied to the simultaneous determination of GSH and Tyr in human urine with satisfactory results.  相似文献   

20.
《Electroanalysis》2017,29(2):635-642
An electrochemical sensor for paracetamol (PC) based on the hexacyanoferate(III) intercalated Ni−Al layered double hydroxide (Ni−Al−HCF) was presented. The as‐prepared LDH structurally and morphologically was characterized by scanning electron microscopy, X‐ray diffraction, and Fourier transform IR. Electrochemical studies revealed that Ni−Al−HCF film modified glassy carbon (GC) electrode exhibited remarkable electrocatalytic activity toward the oxidation of paracetamol. The electrochemical behavior of PC on the Ni−Al−HCF film was investigated in detail. Under optimum experimental conditions, the electrocatalytic response of the modified GC electrode was linear in the PC concentration range 3×10−6−–1.5×10−3 mol L−1, with a detection limit of 8×10−7 mol L−1 (S/N=3), using hydrodynamic amperometry. In addition, the modified electrode exhibited good reproducibility, long‐term stability and anti‐interference property. The fabricated sensor was successfully applied to determination of PC in various pharmaceutical preparations such as tablets, oral solution, and oral drops. Finally, the method was validated by the analysis of paracetamol spiked human serum samples, and good recoveries were obtained in the range of 99.2–103 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号