首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The paper presents the use of a renewable silver‐amalgam film electrode (Hg(Ag)FE) for the determination of the insecticide thiamethoxam (TMO) in Britton‐Robinson buffer pH 7.0 (LOD=0.25 µg mL?1, LOQ=0.70 µg mL?1) by direct cathodic square‐wave voltammetry (SWV). The voltammetric response for TMO obtained at this electrode was the same as that obtained with a hanging mercury drop electrode, represented by two distinct reduction peaks. Since the electron transfer processes are coupled with chemical reactions involving protons, the SWV signals strongly depend on the pH of the supporting electrolyte. The developed Hg(Ag)FE‐SWV method was tested for the determination of TMO in spiked honey and river water samples, as well as for the determination of its content in the commercial formulation Actara 25 WG.  相似文献   

2.
An electrochemical study of the anthelmintic drug bithionol using edge plane pyrolytic graphite electrode (EPPGE) is presented for the first time by applying different electrochemical techniques, such as cyclic voltammetry (CV), square‐wave voltammetry (SWV), square‐wave adsorptive stripping voltammetry (SWAdSV), and alternating current (AC) impedance spectroscopy. Mechanistic aspects of the electrode reaction were studied implying a quasireversible electrode reaction from an adsorbed state of the reactant, coupled with a follow‐up chemical reaction to a final electroinactive product. The overall mechanism appears totally irreversible under conditions of CV at moderate scan rate, while being quasireversible under conditions of the fast SWV. Furthermore, an optimisation of the analytical procedure for quantitative determination of bithionol was conducted by applying SWV in an adsorptive stripping mode. The calibration curve was constructed in the concentration range of 0.1–1.0 μmol L?1 (R2=0.9984) with a sensitivity of 3.6 μA L μmol?1 and LOD of 26.7 nmol L?1. The simple and sensitive SWAdSV procedure was proved to be suitable for the analysis of spiked urine samples.  相似文献   

3.
A carbon paste electrode modified with carbon nanotubes and ferrocene was fabricated.An electrochemical study of the modified electrode and an investigation into its efficiency for the electrocatalytic oxidation of benserazide,uric acid and folic acid were undertaken.The electrode was also used to study the electrocatalytic oxidation of benserazide using cyclic voltammetry,chronoamperometry,and square wave voltammetry(SWV).We found that the oxidation of benserazide at the surface of the modified electrode occurs at a potential about 285 mV lower than that of unmodified carbon paste electrode.SWV gave a linear dynamic range from 8.0×10-7 to 7.0×10 4 mol/L.The detection limit was 1.0×10-7 mol/L for benserazide.This modified electrode was used for the determination of benserazide,uric acid,and folic acid in an urine sample.  相似文献   

4.
A novel CdTe quantum dots‐modified carbon paste electrode (QDMCPE) was fabricated and used to study the electrooxidation of dopamine and uric acid and their mixtures by electrochemical methods. Using square wave voltammetry (SWV), a highly sensitive and simultaneous determination of dopamine and uric acid was explored at the modified electrode. SWV peak currents of dopamine and uric acid increased linearly with their concentrations in the ranges of 7.5×10?8–6.0×10?4 M, and 7.5×10?6–1.4×10?3 M, respectively. Finally this new sensor was used for determination of dopamine and uric acid in some real samples.  相似文献   

5.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

6.
The electrochemical behavior of dopamine (DA) at a MWNTs-modified glassy carbon electrode was investigated by cyclic voltammetry (CV), square wave voltammetry (SWV). The MWNTs modified electrode exhibited marked promotion of the electrochemical reaction of DA in different environments. Under optimum conditions, the peak currents of SWV of DA were increased linearly with incremental concentration of DA in the range from 5 × 10?7 to 1 × 10?5 mol L?1. The limit of detection is 3 × 10?7 mol L?1.  相似文献   

7.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   

8.
An ultrasensitive label‐free electrochemical aptasensor was developed for selective detection of chloramphenicol (CAP). The aptasensor was made using screen‐printed gold electrode modified with synthesized gold nanocube/cysteine. The interactions of CAP with aptamer were studied by cyclic voltammetry, square wave voltammetry (SWV) and electrochemical impedance spectroscopy. Under optimized conditions, two linear calibration curves were obtained for CAP determination using SWV technique, from 0.03 to 0.10 µM and 0.25–6.0 µM with a detection limit of 4.0 nM. The aptasensor has the advantages of good selectivity and stability and applied to the determination of CAP in human blood serum sample.  相似文献   

9.
A sensitive square-wave voltammetry (SWV) method based on basal-plane pyrolytic graphite electrode (BPPGE) and edge-plane pyrolytic graphite electrode (EPPGE) was developed to determine the concentration of the pesticide mandipropamid (MAN) in spiked river water and grape juice samples. Under optimal experimental conditions, the SWV response of EPPGE and BPPGE was linear over the concentration ranges of 0.7 to 9.0 μmol L−1 and 0.5 to 10.0 μmol L−1, respectively. The method was successfully used to determine MAN in spiked samples with good recovery. Cyclic voltammetry (CV) was conducted to understand the mechanism underlying the electrode process of MAN.  相似文献   

10.
《Electroanalysis》2005,17(11):933-940
A carbon paste electrode, modified with benzylbisthiosemicarbazone is used for mercury speciation in water samples. Mercury ion is selectively accumulated on the electrode surface at open circuit and its analysis was performed by cyclic voltammetry or square‐wave voltammetry (SWV). A detection limit of 8 μg L?1 (3σ) was found for 15 min of accumulation using SWV as measurement technique. The effect of several metallic ions and organic substances on voltammetric signal is examined. For speciation purposes, a ligand competition methodology between ligands in solution and electrode is used. Model mercury complexes are characterized as a function of their dissociation kinetics. The method was applied to mercury speciation in water samples from the Jarama River in Madrid.  相似文献   

11.
《Electroanalysis》2017,29(4):1031-1037
This paper describes the synthesis and characterization of gold nanoparticles stabilized in β‐cyclodextrin (AuNP‐CD), which were applied as a platform in the immobilization of laccase (LAC). The AuNP‐CD‐LAC were used in the construction of a new biosensor for rutin determination by square‐wave voltammetry (SWV). Under optimized conditions, the calibration curve showed a linear range for rutin of 0.30 to 2.97 μmol L−1, with a limit of detection of 0.17 μmol L−1. The biosensor demonstrated satisfactory repeatability and electrode‐to‐electrode repeatability (with relative standard deviations of 5.6 and 6.0 %, respectively) and good stability. The biosensor was successfully applied in the determination of rutin in different pharmaceutical samples.  相似文献   

12.
The in-house prepared mercury meniscus modified solid silver amalgam electrode (m-AgSAE) was successfully applied for the detection of organophosphate pesticide tetrachlorvinphos in pH 7 buffer solution. The electrochemical performance of m-AgSAE for the reduction of tetrachlorvinphos was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV), respectively. The surface morphology of solid silver electrode (AgE), as-amalgamated solid silver amalgam electrode (AgSAE), and polished solid silver amalgam electrode (p-AgSAE) was examined by field emission scanning electron microscopy (FESEM). Among the applied techniques, DPV and SWV analysis showed a remarkable increase in the reduction peak current and provided a simple, fast, and sensitive method for the determination of tetrachlorvinphos. The electrochemical impedance spectroscopy (EIS) was used to correlate the electrocatalytic activity of AgSAE, p-AgSAE and m-AgSAE with their interfacial charge transport capabilities. Under the optimized experimental conditions, the DPV and SWV responses were linear over the 1–9 μM and 10–50 μM concentration ranges with a detection limit of 0.06 μM for DPV and 0.04 for SWV. The estimation of tetrachlorvinphos in the ground and waste water samples with the proposed method was in good agreement with that of the added amount. The proposed electrochemical method not only extends the application of non-toxic m-AgSAE, but also offers new possibilities for fast and sensitive analysis of tetrachlorvinphos and its structural analogs in environmental samples.  相似文献   

13.
This work describes the development of a biosensor for paracetamol (PAR) determination based on a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT) and laccase enzyme (LAC), which was immobilized by means of covalent crosslinking using glutaraldehyde. Voltammetric investigations were carried out by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The biosensor was characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FT‐IR). The results showed that the use of MWCNT/LAC composite increased the sensor sensitivity, compared to bare glassy carbon electrode. Factors affecting the voltammetric signals such as pH, ionic strength, scan rate and interferents were assessed. Linear range, limit of detection (LOD) and limit of quantitation (LOQ) obtained were 10–320 μmol L?1, 7 μmol L?1 and 10 μmol L? 1, respectively. The developed biosensor was successfully applied to PAR determination in urine and pharmaceutical formulations samples, with recovery varying from 99.96 to 106.20 % in urine samples and a relative standard deviation less than 1.04 % for PAR determination in pharmaceutical formulations. Therefore, the MWCNT‐LAC/GCE exhibits excellent sensitivity and can be used to PAR determination as a viable alternative in clinical analyzes and quality control of pharmaceutical formulations, through a simple, fast and inexpensive methodology.  相似文献   

14.
This work describes the use of organosmectite modified electrode to evaluate the electrochemical behaviour and to develop an electroanalytical procedure for the determination of methyl orange (MO) dye in natural water. Organosmectites were prepared by intercalation of hexadecyltrimethylammonium cations at various ratios into the interlayer of smectite. The synthesised organosmectites were characterised by various physicochemical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. An amperometric sensor based on organosmectite as electrode modifier for MO sensing purposes was then evaluated by means of clay-film modified electrode using square wave voltammetry (SWV). The electrochemical procedure for MO analysis by stripping voltammetry involves two successive steps: accumulation of MO at open circuit conditions followed by a voltammetric detection in a same medium by the SWV technique. The peak current obtained (after 5 min preconcentration of 15 µmol L?1 MO solution) on a glassy carbon electrode coated by a thin film of the modified clay was more than 2.5 times higher than that exhibited by the same substrate covered by a film of the pristine clay. Under optimised conditions, a linear calibration curve for MO was obtained in the concentration range from 0.1 to 1.6 µmol L?1, leading to a detection limit of 4 × 10?8 mol L?1 (signal-to-noise ratio equal to 3). The interfering effect of various inorganic and organic ions likely to influence the stripping determination of the MO was also examined. To further validate application of this sensor, the proposed method was successfully used to the determination of MO in natural water with satisfactory results.  相似文献   

15.
Simple, sensitive, accurate and inexpensive differential pulse (DPV) and square wave (SWV) voltammetric methods utilizing zeolite modified carbon paste electrode (ZMCPE) were developed for the determination of Oxymetazoline hydrochloride (OXM) in nasal drops. Various experimental parameters were optimized using cyclic voltammetry (CV). Calibration curves were linear over the concentration ranges 9.8×10−8–3.6×10−6 M and 9.8×10−6–9×10−5 M for DPV and SWV, respectively. The DPV method showed a limit of detection (LOD) of 1.04×10−7 M. The method was applied for the determination of OXM in pharmaceutical formulation with an average recovery of 101.18 % (%RSD=0.41, n=9).  相似文献   

16.
A carbon paste electrode, modified with 2, 2′-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (ks) were also determined for the DA oxidation. A dynamic range of 8.0–1400 μM, with the detection limit of 8.4 × 10−7 M for DA, was obtained using SWV (pH = 7.0). The prepared electrode was successfully applied for the determination of DA, UA, and l-cysteine in real samples.  相似文献   

17.
A carbon paste electrode was modified with ZnO nanorods and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,4′AAZCPE) to cause electrocatalysis of norepinephrine oxidation. It has been found that the oxidation of norepinephrine at the surface of modified electrode occurs at a potential of about 180 mV less positive than that of an unmodified carbon paste electrode. Square wave voltammetry (SWV) exhibits linear dynamic range from 1.0×10?7 to 8.0×10?5 M and a detection limit of 3.9×10?8 M for norepinephrine. In addition, this modified electrode was used for simultaneous determination of norepinephrine, tyrosine and nicotine.  相似文献   

18.
Voltammetric method for the determination of non-steroidal anti-inflammatory drug mesalazine (5-ASA) is presented for the first time using boron-doped diamond electrode (BDDE). 5-ASA provides one well-developed SWV oxidation peak at about ?900 mV (vs. saturated silver/silver chloride reference electrode) on BDDE. Britton-Robinson buffer (pH 7.0) was chosen as an optimal supporting electrolyte for the determination of 5-ASA using square wave voltammetry (SWV). Parameters of SWV were developed and low limit of detection (7.0 × 10?7 mol L?1) was reached. In addition, relative standard deviation of repeated measurements (c 5-ASA = 5 × 10?5 mol L?1, RSDM = 2.7%) and relative standard deviation of repeated determinations (RSDD < 1.5%) were calculated and confirm obtained good results. Applicability of the proposed method was verified by an analysis of a pharmaceutical preparation and spiked human urine.  相似文献   

19.
In this work, a simple and low‐cost method was developed for the simultaneous determination of the antioxidants tert‐butylhydroquinone (TBHQ) and butylated hydroxyanisole (BHA) in the presence of the cationic surfactant CPB by square wave voltammetry (SWV) technique using a carbon black paste electrode (CBPE). The performance of the method was investigated by varying parameters such as pH, electrolyte, and type and concentration of surfactant. Under the optimum conditions of 0.2 mol L?1 phosphate buffer (pH 7.0), 600.0 μmol L?1 of cetylpyridinium bromide surfactant and SWV operating parameters optimized through the Doehlert matrix, the method presented low limits of quantification for TBHQ and BHA (0.23 and 0.26 μmol L?1, respectively) and high precision in successive measurements. The proposed method was applied in mayonnaise, margarine and biodiesel and the accuracy of method was checked by the HPLC technique.  相似文献   

20.
An electrochemical method for the simultaneous determination of benzene, toluene and xylenes (BTX) in water was developed using square‐wave voltammetry (SWV). The determination of BTX was carried out using a cathodically pre‐treated boron‐doped diamond electrode (BDD) using 0.1 mol L?1 H2SO4 as supporting electrolyte. In the SWV measurements using the BDD, the oxidation peak potentials of the total xylenes‐toluene and toluene‐benzene couples, present in ternary mixtures, display separations of about 100 and 200 mV, respectively. The attained detection limits for the simultaneous determination of benzene, toluene and total xylenes were 3.0×10?7, 8.0×10?7 and 9.1×10?7 mol L?1, respectively. The recovery values taken in ternary mixtures of benzene, toluene and total xylenes in aqueous solutions are 98.9 %, 99.2 % and 99.4 %, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号