首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The electrophoretic separation of high-molecular-weight proteins (> 500 kDa) using polyacrylamide is difficult because gels with a large enough pore size for adequate protein mobility are mechanically unstable. A 1% vertical sodium dodecyl sulfate (SDS)-agarose gel electrophoresis (VAGE) system has been developed that allows titin (a protein with the largest known SDS subunit size of 3000-4000 kDa) to migrate over 10 cm in a approximately 13 cm resolving gel. Such migration gives clear and reproducible separation of titin isoforms. Proteins ranging in size from myosin heavy chain ( approximately 220 kDa) up to titin can be resolved on this gel system. Electroblotting of these very large proteins was nearly 100% efficient. This VAGE system has revealed two titin size variants in rabbit psoas muscle, two N2BA bands in rabbit cardiac muscle, and species differences between titins from rat and rabbit muscle. Agarose electrophoresis should be the method of choice for separation and blotting of proteins with very large subunit sizes.  相似文献   

2.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

3.
Acidic and basic pathogenesis-related proteins (PR-Ps) were extracted from the intercellular fluid (IF) of soybean leaves, locally infected with tobacco necrosis virus and showing necrotic local lesions. Proteins were detected by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) using PhastSystem and precast commercially available gels. Extracts from healthy leaves were run as controls. PR-Ps were first run under native PAGE conditions or isoelectric focusing (IEF), the gels stained with Coomassie Blue, then run under sodium dodecyl sulfate (SDS)-denaturing conditions and finally stained with silver. Ten major acidic PR-Ps were separated; their Mr's were close to those found by conventional PAGE. Their isoelectric points ranged from 3.5 to 5.0. Ten basic PR-Ps were separated and their Mr's estimated. None of these acidic or basic soybean PR-Ps was a glycoprotein. PAGE with PhastSystem and precast gels gives reliable results, comparable with those from conventional 2D-PAGE, with simpler experimental procedures. By electrophoresing Coomassie-stained gels with SDS in the second dimension, we were able to control the first-dimensional separation and to avoid laborious protocols generally adopted with unstained gels.  相似文献   

4.
Niepmann M  Zheng J 《Electrophoresis》2006,27(20):3949-3951
Analysis of the oligomeric state of a native protein usually requires analytical ultracentrifugation or repeated gel filtration to calculate the protein's size. We have developed a discontinuous native protein gel electrophoresis system that allows the separation of even basic proteins according to their size, oligomeric state, and shape. This gel system combines the addition of negative charges to the proteins by Serva Blue G with a discontinuous buffer system and gradient gels. As in SDS-PAGE, chloride constitutes the high mobility anion in the gel and anode buffer. However, for sample focusing this system employs histidine instead of glycine as the slow dipolar ion following from the cathode buffer to improve migration of basic proteins. In addition, proteins run into gel pores corresponding to their size and shape in the gradient gel. Using this gel system, we show that the polypyrimidine tract-binding protein (PTB) is a monomer.  相似文献   

5.
Modification to the original immobilized metal affinity electrophoresis (IMAEP) technique is presented. SDS-PAGE is used instead of native PAGE for improved extraction of phosphoproteins from a mixture of proteins. Protein samples treated with 2% w/v SDS instead of native sample buffer ensure that proteins are negatively charged. These negative charges on the proteins assure that the proteins migrate electrophoretically towards the anode regardless of their pI values and hence pass through the region embedded with the metal ions. Another benefit of treating proteins with SDS is that it unfolds the phosphoproteins exposing the phosphate groups to facilitate the metal-phosphate interactions. Phosphorylated ovalbumin can only be extracted after SDS sample buffer treatment. Data show that there is no detrimental effect upon SDS treatment on the extraction of phosphoproteins from a mixture of proteins. Electrophoretic migration of phosphoproteins ceases upon encounter with metal ions like Al+3, Ti+3, Fe+3, Fe+2, and Mn+2 whereas non-phosphorylated proteins migrate freely.  相似文献   

6.
Polyacrylamide gel electrophoresis (PAGE) of proteins denatured with SDS (sodium dodecyl sulfate) has been used successfully to separate proteins according to their molecular mass. In spite of the extensive use of this technique, the motion of the protein-SDS complex in a polyacrylamide gel is still not understood. Here we report on the observation of the orientation (in the field direction) and relaxation of protein-SDS complexes during pulsed intermittent field PAGE experiments. The results give an indication of the stiffness of the molecules and may be useful for the development of a technique to improve the separation of large proteins using pulsed electric fields.  相似文献   

7.
We report a subdivision of the mitochondrial proteome into defined sets of proteins, which is based on the combination of three different gel electrophoresis procedures. First, Blue-native polyacrylamide gel electrophoresis is employed to separate mitochondrial protein complexes. The protein complexes are electroeluted and completely detached from Coomasssie blue. Subsequently the subunits of the protein complexes are separated by isoelectric focusing and finally by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The resolution capacity of the procedure is demonstrated for the ATP synthase complex, the cytochrome c reductase complex and the preprotein translocase of the outer mitochondrial membrane (the TOM complex). The method allows the separation of isoforms of subunits forming part of protein complexes, whose occurrence seems to be rather a rule than an exception in higher eukaryotes. Furthermore, extremely hydrophobic proteins are detectable on the gels.  相似文献   

8.
Zhan X  Desiderio DM 《Electrophoresis》2003,24(11):1834-1846
Two-dimensional polyacrylamide gel electrophoresis (PAGE), together with 2-D gel electrophoresis (GE) analysis software, is a common technique to analyze a complex proteome. In order to accurately locate the differentially expressed proteins in human pituitary macroadenoma tissues in our long-term research program to clarify the molecular mechanisms of macroadenoma formation, a reproducible separation system is needed. An immobilized pH-gradient dry gel-strip (IPG strip) has been extensively used for first-dimensional isoelectric focusing (IEF), and has achieved a high degree of reproducibility in the IEF direction. For the second dimension (SDS-PAGE), different types of gel systems are available, including horizontal vs. vertical gel systems, and gradient vs. constant-percentage gels. A typical horizontal system is the Multiphor II system that analyzes one gel at a time, using a precast gradient gel (180 x 245 x 0.5 mm), and a typical vertical system is the Dodeca system, which analyzes up to 12 gels at a time, using usually a single-concentration gel (190 x 205 x 1 mm). The present study evaluated the spatial and quantitative reproducibility of the two systems for the separation of the complex human pituitary proteome. PDQuest software was used to analyze the digitized gel-image data, and SPSS statistical software was used to analyze the data. The results demonstrated a high percentage (>99%) of protein-spot matches within each electrophoretic system. The Dodeca gel system demonstrated better between-gel reproducibility for spot position, higher resolution in the Sodium dodecyl sulfate (SDS)-PAGE direction, lower gel background, better spot quality, and higher reproducibility of the spot volume.  相似文献   

9.
This paper discusses the effects of gel composition and separation temperature on the migration properties of fluorescein-5-isothiocyanate-labeled protein molecular mass markers (ranging from 20 100 to 205 000 Da) in automated ultrathin-layer sodium dodecyl sulfate (SDS) gel electrophoresis. The separation mechanism with the agarose and composite agarose - linear polyacrylamide, agarose - hydroxyethyl cellulose, and agarose - polyethylene oxide matrices were all found to comply with the Ogston sieving model in the molecular mass range of the protein molecules investigated. Our temperature studies revealed that electrophoretic separation of SDS protein complexes is an activated process and, in pure agarose and in composite agarose hydroxyethyl cellulose and agarose - polyethylene oxide matrices that the separation requires increasing activation energy as a function of the molecular mass of the separated proteins. On the other hand, when linear polyacrylamide was used as composite additive, the activation energy demand of the separation decreased with increasing solute molecular mass. The sensitivity of the laser-induced fluorescent detection of the automated ultrathin-layer electrophoresis system was evaluated by injecting a series of dilutions of the markers and was found to be less than 2.5 ng/band for the fluorophore-labeled protein.  相似文献   

10.
The 2DE is a powerful proteomic technique, with excellent protein separation capabilities where intact proteins are spatially separated by pI and molecular weight. 2DE is commonly used in conjunction with MS to identify proteins of interest. Current 2DE workflow requires several manual processing steps that can lead to experimental variability and sample loss. One such step is the transition between first dimension IEF and second‐dimension SDS‐PAGE, which requires exchanging denaturants and the reduction and alkylation of proteins. This in‐solution‐based equilibration step has been shown to be rather inefficient, losing up to 30% of the original starting material through diffusion effects. We have developed a refinement of this equilibration step using agarose stacking gels poured on top of the second‐dimension SDS‐PAGE gel, referred to as in‐gel equilibration. We show that in‐gel equilibration is effective at reduction and alkylation in SDS‐PAGE gels. Quantification of whole‐cell extracts separated on 2DE gels shows that in‐gel equilibration increases protein retention, decreased intergel variability, and simplifies 2DE workflow.  相似文献   

11.
To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A “Counter Free‐Flow” elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high‐resolution separation of a complex protein mixture can be achieved on this system using SDS‐PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48–96 fractions over a mass range of ~10–150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 μL/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 μg per channel and reduced resolution.  相似文献   

12.
Large-pore-size agarose gels provide excellent resolving capacity for high molecular weight biomolecules. Thin-layer agarose isoelectric focusing (IEF) gels on polyester support films are especially useful for the separation of large proteins based on their pI in native conformation, but the method has suffered from the lack of detection methods compatible with agarose gels in hydrated form. Recently, an acrylamide copolymerization method was reported to enable mass-spectrometry-compatible silver staining and in-gel digestion of proteins. In this study, the method was further applied by demonstrating successful reverse imidazole-zinc staining of thin-layer agarose IEF gels copolymerized with acrylamide. The sensitivity of the reverse staining method on the composite gel at its best equaled the sensitivity of the traditional dried agarose silver staining method. Owing to the increased durability and reversible detection, the reverse-stained first-dimension gel could be conveniently prepared for the second-dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis by reduction and alkylation. In addition, the micropreparative generation of tryptic peptides of Coomassie brilliant blue R-250 stained proteins in the composite gel is demonstrated.  相似文献   

13.
Hou WC  Liang HJ  Wang CC  Liu DZ 《Electrophoresis》2004,25(17):2926-2931
Commercial glutathione reductase (GR) from spinach and yeast (Saccharomyces cerevisiae) were stained on 7.5% native polyacrylamide gel electrophoresis (PAGE) gels or 15% sodium dodecyl sulfate (SDS)-PAGE gels with or without further purification by a 2',5'-ADP Sepharose 4B affinity column. For SDS-PAGE gels, the SDS was removed first by washing twice with 25% isopropanol in 10 mM Tris-HCl (pH 7.9) for 10 min. The gel was then dipped in a 50 mM Tris-HCl buffer (pH 7.9) containing 4.0 mM oxidized glutathione (GSSG), 1.5 mM NADPH, and 2 mM 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) for 20 min. The GR activity was negatively stained in the dark by a solution containing 1.2 mM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 1.6 mM phenazine methosulfate (PMS) for 5-10 min. The contrast between the clear zone of GR activity and the purple background was found in both native and SDS-PAGE gels. This negative staining method can detect GR as little as 0.064 units and 0.0032 units, respectively, for spinach and yeast sources. Under reduced SDS-PAGE gels, the GR activity band located on 72 kDa for spinach and 51 kDa for yeast. This fast and sensitive method could be used during enzyme purification and for characterization of GR from different sources under different physiological stages or conditions.  相似文献   

14.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

15.
Danos O  Svinartchouk F 《Electrophoresis》2006,27(17):3475-3479
2-DE is an important tool in proteomics research. However, intrinsic gel-to-gel variability of 2-DE often masks the biological differences between the samples and compromises quantitative comparison of protein expression levels. Here, we describe a modification of 2-DE that results in improved matching and quantification of proteins. This was accomplished by performing IEF of two samples in two IPG strips separated by a dialysis membrane. After IEF running, the strips were separated and the SDS-PAGE dimension was accomplished on two individual gels. After gel staining with CBB, ImageMaster 2D Platinum software (Amersham) was used for spot detection and quantification. Analysis of protein extracts from C2C12 myoblasts by this method resulted in 99% spot-matching efficiency and CV in stain intensity (% volume) was less than 0.5 for 98% of spots. We conclude that this technique, called dialysis-assisted gel electrophoresis, gives superior spot matching and quantitative reproducibility compared to IEF conducted on separate strips.  相似文献   

16.
17.
Das C  Zhang J  Denslow ND  Fan ZH 《Lab on a chip》2007,7(12):1806-1812
Two-dimensional (2D) protein separation is achieved in a plastic microfluidic device by integrating isoelectric focusing (IEF) with multi-channel polyacrylamide gel electrophoresis (PAGE). IEF (the first dimension) is carried out in a 15 mm-long channel while PAGE (the second dimension) is in 29 parallel channels of 65 mm length that are orthogonal to the IEF channel. An array of microfluidic pseudo-valves is created for introducing different separation media, without cross-contamination, in both dimensions; it also allows transfer of proteins from the first to the second dimension. Fabrication of pseudo-valves is achieved by photo-initiated, in situ gel polymerization; acrylamide and methylenebisacrylamide monomers are polymerized only in the PAGE channels whereas polymerization does not take place in the IEF channel where a mask is placed to block the UV light. IEF separation medium, carrier ampholytes, can then be introduced into the IEF channel. The presence of gel pseudo-valves does not affect the performance of IEF or PAGE when they are investigated separately. Detection in the device is achieved by using a laser induced fluorescence imaging system. Four fluorescently-labeled proteins with either similar pI values or close molecular weight are well separated, demonstrating the potential of the 2D electrophoresis device. The total separation time is less than 10 minutes for IEF and PAGE, an improvement of 2 orders of magnitude over the conventional 2D slab gel electrophoresis.  相似文献   

18.
A set-up for casting fluorescent indicator agarose gels on ultrathin polyacrylamide microelectrophoresis gel media (Pharmacia PhastGel media) is described. The zymogram system allows a rapid and sensitive detection of deoxyribonuclease in various gel media, following isoelectric focusing, native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

19.
The preparation of homogeneous ultrathin native polyacrylamide gels, using a basic as well as an acidic buffer system is described. The basic buffer system consists of Tris-HC1/Tris-glycine, the same buffer as in sodium dodecyl sulfate (SDS)-gel electrophoresis but without SDS. The acidic system uses potassium acetate, pH 4.3, as gel buffer and beta-alanine, pH 4.6, acetic acid as electrolytes. The gels are covalently bound on glass plates. Binding of acidic gels requires a special pretreatment of glass plates. The whole procedure is simple and extraordinarily fast: 100-120 min from the start of gel preparation to the end of electrophoresis. Coomassie staining is done in 40 min and silver staining in 90 min. The native gels are excellently suited for diffusion blotting. Further attractive properties of these gels are easy handling, simple drying and dimensional stability.  相似文献   

20.
Here we combine a standard two-dimensional difference gel electrophoresis (DIGE) protocol with subsequent post-staining of gels with phosphospecific fluorescent Pro-Q Diamond dye. The combination of these two methods for fluorescence detection of proteins allows quantitative detection of phosphoproteins in 2-DE-gels. We established this protocol within a functional proteomics experiment. Mammary epithelial cells (EpH4) were stimulated in culture by epidermal growth factor (EGF), endosomal fractions prepared after subcellular fractionation and phosphorylated proteins successfully detected on endosomes. For instance, Endo A cytokeratin, known as phosphoprotein and differentiation marker inducible by MAPK signaling, was identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). With this protocol, all steps of combined proteome and phosphoproteome profiling experiments are significantly simplified and accelerated, taking full advantage of both methods in terms of specificity, sensitivity and accuracy of quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号