首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Several magnetorheological elastomer (MRE) samples, with different weight percentages of carbon black, were fabricated under a constant magnetic field. Their microstructures were observed by using an environmental scanning electron microscope (SEM), and their mechanical performance including magnetorheological (MR) effect, damping ratio and tensile strength were measured with a dynamic mechanical analyzer (DMA) system and an electronic tensile machine. The experimental results demonstrate that carbon black plays a significant role in improving the mechanical performance of MR elastomers. Besides the merits of high MR effect and good tensile strength, the damping ratio of such materials is much reduced. This is expected to solve a big problem in the application of MR elastomers in practical devices, such as in adaptive tuned vibration absorbers.  相似文献   

2.
The paper presents experimental research and numerical modeling of dynamic properties of magnetorheological elastomers (MREs). Isotropic and anisotropic MREs have been prepared based on silicone matrix filled by micro-sized carbonyl iron particles. Dynamic properties of the isotropic and anisotropic MREs were determined using double-lap shear test under harmonic loading in the displacement control mode. Effects of excitation frequency, strain amplitude, and magnetic field intensity on the dynamic properties of the MREs were examined. Dynamic moduli of the MREs decreased with increasing the strain amplitude of applied harmonic load. The dynamic moduli and damping properties of the MREs increased with increasing the frequency and magnetic flux density. The anisotropic MREs showed higher dynamic moduli and magnetorheological (MR) effect than those of the isotropic ones. The MR effect of the MREs increased with the rise of the magnetic flux density. The dependence of dynamic moduli and loss factor on the frequency and magnetic flux density was numerically studied using four-parameter fractional derivative viscoelastic model. The model was fitted well to experimental data for both isotropic and anisotropic MREs. The fitting of dynamic moduli and loss factor for the isotropic and anisotropic MREs is in good agreement with experimental results.  相似文献   

3.
Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test conditions. Both uniaxial tension tests and equi-biaxial bubble inflation tests were performed on isotropic natural rubber MREs using the same magnetic fields having magnetic flux densities up to 206 mT. The samples were cycled between pre-set strain limits. The magnetic field was switched on for a number of consecutive cycles and off for the same number of following cycles. The resultant change in stress due to the application and removal of the magnetic field was recorded and results are presented.  相似文献   

4.
Using Digital Image Correlation on high‐resolution images, the full strain field near the tip of a crack propagating under cyclic loading in an elastomer was characterized. We show unambiguously, and for the first time, the existence of a strongly localized and highly oriented process zone close to the crack tip and propose a simple physical model introducing a local energy release rate glocal = WunloadingH0, where Wunloading is the unloading strain energy density in uniaxial tension at the maximum strain measured at the crack tip, and H0 is the undeformed size of the highly stretched zone in the loading direction. Remarkably, the crack growth rate under cyclic loading is found to fall on a master curve as a function of glocal for three elastomers with different filler contents and crosslinking densities, while the same crack growth rate as a function of the applied macroscopic energy release rate G, differs by two orders of magnitude for the same three elastomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1518–1524, 2011  相似文献   

5.
For energy scavenging applications, estimating fatigue life of dielectric elastomer is as crucial as computing the amount of scavenged energy. Crack growth approach, well known in rubber industry, is a fast methodology to estimate fatigue life. We adapt this methodology to dielectric silicone elastomers (Elastosil 2030) and we focus in particular on the factors influencing this estimation such as sample geometry, tearing energy, power law. We underline that the variation in tearing energy estimation induces a small dispersion on the fatigue life estimation whereas power law identification is the crucial and critical parameter. Finally, we define an index of performance based on fatigue life and scavenged energy density, and we compare two materials (acrylic 3MVHB4910 and silicone Elastosil 2030).  相似文献   

6.
7.
Facile synthesis of α-hydroxy and α-amino acids is observed at temperatures from 145 to 280 °C with catalytic Ni2+, with cyano ligands as source for C and N, and with CO as a reductant and as a source for C. Implications for the problem of the origin of life are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号