首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
Zhenfen Huang  Yiping Cao  Aiping Zhai  Yuhang He  Jun Kou 《Optik》2012,123(21):1915-1919
A new 3D shape measurement method based on non-integral twin-frequency grating projection is proposed. In this paper, the projected composite grating is composed of two sinusoidal gratings, and the quotient of whose frequencies is not an integer. By using appropriate phase-shifting algorithms, two wrapped phases can be obtained from sixteen frames of the distorted grating patterns. In aid of appropriate phase unwrapping method, the unwrapped phase of high frequency fringe is obtained only from the relation of the two wrapped phases by a pixel-to-pixel phase unwrapping technique. Therefore the unwrapped phase of high frequency fringe pattern is independent of the low frequency fringe pattern, different from traditional integral twin-frequency grating projection methods in which the phase unwrapping error of low frequency fringe pattern may be propagated onto the unwrapped phase of high frequency fringe pattern. The new theory proves that the proposed method is applicable to measure discontinuous object, and has considerable measurement accuracy.  相似文献   

2.
减少条纹投影轮廓术的条纹图数量一直是本领域的研究热点。传统的时间相位解包裹算法,一般需要额外的条纹信息来确定条纹级次,导致条纹图数量过多。提出一种用于三维测量的快速相位解包裹算法,只需要N步标准相移正弦条纹图,就可以完成绝对相位的计算。首先,利用标准相移算法计算包裹相位和消除背景的掩膜;然后,直接利用包裹相位和掩膜,根据连通域标记算法计算条纹级次,进而求得绝对相位。该方法最少只需3幅条纹图,就可以完成三维测量,数据处理速度快。计算机仿真和实验结果验证了该方法的有效性和鲁棒性。  相似文献   

3.
Lujie Chen  Cho Jui Tay  Yuanhao Huang 《Optik》2005,116(3):123-128
Quality-guided algorithm is a widely used method in phase unwrapping. This paper shows an accurate quality map based on fringe contrast for 3D shape measurement. Phase-shifted fringe patterns are projected onto an object surface by a programmable liquid crystal projector and recorded by a CCD camera. A wrapped phase map and a fringe contrast map are extracted from the deformed fringe patterns by the phase-shifting technique. Guided by the contrast map, the quality-guided unwrapping algorithm minimizes unwanted shadow and non-uniform surface reflectance effects and is able to retrieve a correct surface profile. Validity of the proposed method is tested on a fish model and a cutting tool specimen.  相似文献   

4.
A novel fringe projection profilometry using a single sinusoidal fringe pattern projected is proposed. Computer-generated sinusoidal fringe and uniform intensity patterns are firstly projected on a testing object by a liquid crystal display projector. The variable reflection intensity of a fringe pattern is then roughly normalized by division operation applied to the grabbed fringe and uniform intensity patterns projected. Fringe intensity is further normalized by employing an interpolation algorithm. The deformed sinusoidal pattern encoding object shape is converted to a wrapped phase map without using phase-shifting or Fourier transform. Computer simulation and experimental performance are evaluated to demonstrate the validity of the proposed method. The experimental results compared with those of the four-step phase-shifting and fast Fourier transform methods are also presented.  相似文献   

5.
The widest used algorithms for 3-D surface measurement using structured fringe patterns are phase stepping and Fourier fringe analysis. The techniques currently employed use mostly monochrome fringe patterns as a tool for phase information measurement and further surface reconstruction. However, the information contained in colour images is much more than that of monochrome, in this case, a new colour technique can be employed to analyse a measured scene with colour fringe patterns.This paper presents a new method for improving the measurement of 3-D shapes by using colour information of the measured scene as an additional parameter. The new method is based on primary colours (red, green and blue) to increase the number of the illuminated fringe patterns, which will remove or significantly reduce the common drawbacks of existing methods. The proposed technique produces a number of coloured structured lighting patterns, which are projected from different angles onto the scene. These patterns are analysed using masking algorithms, a specially adapted multi-colour version of the standard Fourier fringe analysis method and calibration routines. In this way a number of the standard difficulties are overcome.  相似文献   

6.
The multichannel approach is combined with the reduced temporal phase unwrapping scheme for rapid shape measurement. The shape is measured using projected fringes and optical triangulation. Fringes are projected using a colour video projector and recorded by a CCD-camera. Using a colour video projector and a colour video camera makes it possible to use the red, green and blue channels individually. This is the multichannel method. In each channel, the blue, green and red carries fringe maps with different fringe pitch. A short sequence of phase-stepped images is projected and acquired sequentially in time. This reduces measurement time by a factor of three when compared to using one channel. From the acquired images, it is possible to calculate absolute phase using the reduced temporal phase unwrapping analysis scheme. For each channel, it is also possible to calculate fringe contrast and fringe amplitude. Therefore, it is possible to retrieve the colour of an object without acquiring an extra image. The method is demonstrated by measuring the shape of two generally coloured and complex shaped objects.  相似文献   

7.
As the blade must have precise size and accurate shape, three-dimensional (3D) profile measurement of the blade is very important. 3D profile measurement method based on multi-value coding is proposed. This method designs a multi-value coding stripe pattern combined with the four-step phase-shifting method. Two kinds of fringe patterns are projected onto the object respectively, one is sinusoidal intensity distribution used for wrapped phase, the other is multi-value coding fringe pattern for phase unwrapping. Because this encoding method is simple, and easy to implement, the absolute phase can be quickly implemented. Experimental results demonstrated that the proposed method can achieve a high precision, high speed and low cost 3D profile measurement of the blade.  相似文献   

8.
An improved phase unwrapping method is proposed to reduce the projection fringes in three-dimensional (3D) surface measurement. Color fringe patterns are generated by encoding with sinusoidal fringe and stair phase fringe patterns in red and blue channels. These color fringe patterns are projected onto the tested objects and then captured by a color CCD camera. The recorded fringe patterns are separated into their RGB components. Two groups of four-step phase-shifting fringe patterns are obtained. One group of the stripes are four sinusoidal patterns, which are used to determine the wrapped phase. The other group of stripes are four sinusoidal patterns with the codeword embedded into stair phase, whose stair changes are perfectly aligned with the 2π discontinuities of sinusoidal fringe phase, which are used to determine the fringe order for the phase unwrapping. The experimental results are analyzed and compared with those of the method in Zheng and Da (2012. Opt Express 20(22):24139–24150). The results show that the proposed method needs only four fringe patterns while having less error. It can effectively reduce the number of projection fringes and improve the measuring speed.  相似文献   

9.
This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.  相似文献   

10.
邱磊  钱斌  伏燕军  钟可君 《应用光学》2018,39(4):522-527
在现有的针对复杂物体表面形貌的三维测量方法中, 为了完成绝对相位的测量, 通常需要处理至少6幅条纹图像, 限制了测量速度。提出了采用2幅正弦条纹和2幅三角波条纹图来获得物体三维形貌的方法。利用两步相移正弦条纹和两步相移三角条纹得到截断相位, 再利用两步相移三角波条纹得到条纹级次, 减少了投影条纹幅数, 提高测量速度。在得到条纹级次时, 计算三角波条纹强度调制和强度对比度, 与计算相位相比, 可以减少数据处理的时间, 进一步提高测量速度, 同时能减小物体表面反射率的影响, 提高了测量精度。测量最大高度为39 mm的阶梯状标准块, 得到的最大绝对误差和最大的RMS误差分别为0.045 mm和0.041 mm。验证了该方法的有效性和实用性, 在高速实时的复杂形貌三维测量中有广泛的应用前景。  相似文献   

11.
Feipeng Da  Hao Huang 《Optik》2012,123(24):2233-2237
A novel Fourier transform 3D shape measurement method based on color fringe projection is proposed in order to solve the spectrum overlapping and phase unwrapping problems existed in Fourier transform profilometry (FTP). The R and G components of the color fringe are set to two sinusoidal patterns with different frequencies and the B component is set to the average value of R or G component. Then this pattern is projected to the object and the deformed fringe image is captured. Three gray patterns are separated from the color fringe, the background and high frequency noise can be eliminated using our method and the accurate unwrapped phase can be got. Only one shot color pattern is projected to get the 3D information of the object. Experiment results show that the 3D information of an object can be obtained rapidly and accurately.  相似文献   

12.
A new method of absolute phase evaluation for three-dimensional (3D) profile measurement using fringe projection is presented, which combines the gray code and the phase shift technique. Two kinds of fringe patterns are projected onto the object surface respectively, one is sinusoidal intensity distribution used for phase demodulation and the other is gray code fringe pattern for unwrapping. These images are acquired by camera and stored into computer. The absolute phase is obtained by analyzing these images. The validity of this method is verified experimentally. The method is superior to other phase unwrapping methods.  相似文献   

13.
王柳  陈超  高楠  张宗华 《应用光学》2018,39(3):373-378
结构光投影方法在三维形貌测量中应用广泛,但是由于被测物体表面反射率变化范围较大,过度曝光会导致相位信息无法获取。而传统的高动态范围扫描技术步骤复杂,耗时较长。文中提出一种自适应条纹投影技术,向待测物体表面投射较高灰度级的条纹图,判断并标记过度曝光点。降低投射强度后通过非线性最小二乘法拟合来确定每个饱和像素点最适合的最大输入灰度,用重新生成的自适应条纹图来采集图像并进行相位计算和三维形貌恢复。通过实验验证,该方法可以对物体表面的高反光区域进行有效测量,避免过度饱和,仿真误差在0.02 mm范围内,实测误差约为0.14 mm,实际实验对过曝点的补偿率可达到99%。  相似文献   

14.
基于液晶显示投影技术的数字影栅云纹相移实现方法   总被引:4,自引:0,他引:4  
杨福俊  何小元  孙伟 《光学学报》2005,25(8):057-1061
影栅云纹是物体离面变形和表面形貌测量常用的一种比较简单的方法,用单纯的影栅云纹法即便在最好的光学系统配置情况下测量精度也只有1~100μm左右,在影栅云纹测试方法中引进相移技术是提高测量精度的主要手段。采用液晶投影仪和数字图像处理技术实现数字影栅云纹测量的准确数字相移,避免了在影栅云纹法中使用结构比较复杂或特制的相移机构。由计算机产生相移条纹图经液晶显示投影,应用实时图像灰度算术相减技术得到数字相移影栅云纹条纹图。该方法具有“基准栅”的栅距和相移步长实时可调,配置高速图像采集系统和图像后处理软件,可将相移技术引入动态测量中,从而提高动态测量的精度的优点。最后的悬臂梁实验结果证实了该方法的有效性。  相似文献   

15.
一种针对彩色物体的光栅投影三维测量方法   总被引:1,自引:0,他引:1  
胡路遥  达飞鹏  王露阳 《光学学报》2012,32(2):212002-135
针对传统彩色编码光栅三维轮廓术中光栅易受到物体表面彩色纹理的干扰,从而造成编码条纹颜色误判和相位误差增大这一问题,提出一种基于互补彩色光栅的三维测量方法,给出了理论分析、光栅设计原理、补偿算法与实验分析。对图像进行初步的解耦校正后,通过预先设计的光栅互补特性,依据彩色响应模型求取物体表面逐点的反射率,并对红绿蓝(RGB)三通道反射率的不平衡进行补偿,消除物体表面彩色纹理的干扰,改善光栅的正弦性。以补偿后的图像来指导彩色编码条纹的分割解码并用傅里叶变换法提取出包裹相位,依据解码结果指导相位展开,继而完成整个三维测量过程。实验证明该方法对彩色纹理的补偿准确有效,降低了彩色纹理对测量的影响。  相似文献   

16.
单幅彩色条纹投影的不连续物体表面三维形貌测量   总被引:3,自引:1,他引:2  
戴美玲  杨福俊  耿敏  何小元  康新 《光学学报》2012,32(4):412005-142
提出了基于单幅彩色条纹投影的不连续物体及动态三维形貌的测量方法。该方法利用计算机产生一幅正弦条纹图和两幅单一强度图分别通过红蓝绿三个通道合成为一幅彩色条纹图,由液晶投影仪投影到被测物体表面,彩色CCD采集变形条纹图并保存在计算机中。通过三色分离,同时获得正弦条纹图和反映表面反射率分布及背景信息图,通过图像除法运算及亚像素精度归一化处理实现物体三维形貌的恢复。对于表面形貌不连续的物体,利用蓝色分量的灰度图像进行二值化处理定位阴影或暗背景,从而引导正确的相位求解。实验验证了该方法对不连续物体动态测量方面的可行性。  相似文献   

17.
Digital speckle interferometry for assessment of surface roughness   总被引:1,自引:0,他引:1  
In this work, the principle of interferometry is used to assess the surface roughness of the machined surfaces. Interferometry produces an interference fringe pattern when two or more light waves interact with each other. It is one of the important tool for precision optical metrology and testing. Well-known advantages of the phase shifting interferometry include high measurement accuracy, rapid measurement, good result even with low contrast fringes and that the polarity of the wave front can be determined. In fringe projection techniques, a known optical fringe pattern is projected onto the surface of interest. The fringe pattern on the surface is perturbed in accordance with the profile of the test surface, thereby enabling direct derivation of surface profile.In this work, an attempt has been made to assess the surface roughness using a speckle fringe analysis method of five frame phase shift algorithm for machined surface (ground surface). As these fringes are too noisy, advanced filtering technique has been used so as to reduce noise and to get improved wrapped phase map from the phase shifted fringes. A phase unwrapping software has been developed using discrete cosine transform (DCT) to generate the three-dimensional (3-D) profiles. Finally, it is compared with Ra values measured using a mechanical stylus instrument, showing good agreement.  相似文献   

18.
This paper describes the analysis of phase distortion in phase-shifted fringe projection method. A phase distortion occurs when the phase shifting technique is applied to extract the phase values from projected fringe patterns in surface contouring. The phase distortion will induce measurement errors especially in the measurement of micro-components. The cause of such phase distortion is investigated and the influence of phase distortion on the measurement of micro-components is discussed. To eliminate the phase distortion, a continuous wavelet transform (CWT) is employed to extract phase values from object surface modulated fringe patterns. Principle of the proposed CWT phase extraction method is described and experiments are conducted to verify the proposed method. It is shown that by the use of CWT phase extraction method phase distortion induced in conventional phase-shifting technique can be completely eliminated.  相似文献   

19.
基于双色条纹投影的快速傅里叶变换轮廓术   总被引:9,自引:5,他引:9  
在实际傅里叶变换轮廓术测量中,获取的条纹图扩展的零频分量对傅里叶变换轮廓术的测量精度和测量范围有很大影响,甚至妨碍正确三维面形的恢复。π相移技术常被用来消除零频分量对测量的影响,但需要在测量系统中安装精密相移装置,并需要采集两帧具有π相位差的条纹图。传统傅里叶变换轮廓术中,完成精密相移需要较长的时间,影响了傅里叶变换轮廓术测量方法的实时性。提出了采用双色正弦光栅投影来实现从一帧条纹图中消除零频对傅里叶变换轮廓术测量的影响。该方法同传统的π相移方法相比,不需要相移装置,测量系统简单,并且能真正实现高速测量。  相似文献   

20.
散斑噪声是激光干涉时的普遍现象,其覆盖被测表面对应区域的形状信息,造成测量误差。针对斜入式激光干涉测量中散斑噪声的特点,提出一种基于物体像的散斑噪声的识别方法。该方法通过统计物体像中有效测量区域和背景区域内灰度分布的特点,自动计算出判定散斑噪声的上下阈值。基于物体像与干涉条纹图像间微米级的映射关系,得到干涉条纹图像中散斑噪声的位置。设计了相关实验,对干涉条纹图像中识别出的散斑噪声区域进行修补,消除了包裹相位图中一个条纹周期内相邻像素点间大于π的相位突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号