首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutions are analyzed of the linearized relativistic Boltzmann equation for initial data fromL 2(r, p) in long-time and/or small-mean-free-path limits. In both limits solutions of this equation converge to approximate ones constructed with solutions of the set of differential equations called the equations of relativistic hydrodynamics.  相似文献   

2.
The problem of finding the summational collision invariants for the Boltzmann equation is tackled with the aim of proving that the most general solution of the problem is not different from the standard one even when the equation defining a collision invariant is only satisfied almost everywhere inR 3×R 3×S 2. The collision invariant is assumed to be in the Hilbert spaceH of the functions which are square integrable with respect to a Maxwellian weight.  相似文献   

3.
We show that there exists a wide class of distribution functions (with moments of any order as close to their equilibrium values as we like) which can provide an abnormally low rate of entropy production. The result is valid for the Boltzmann equation with any cross section (|V|, ) satisfying a mild restriction. The functions are constructed in an explicit form and we discuss some applications of our results.  相似文献   

4.
We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact relativistic body allows for anisotropic pressures in the presence of the electromagnetic field. New exact solutions are found to the Einstein-Maxwell system. A particular case is shown to be regular at the stellar centre. In the isotropic limit we regain the general relativistic isothermal Universe. We show that the mass corresponds to the values obtained previously for quark stars when anisotropy and charge are present.   相似文献   

5.
The equation yxx=f(x)y2+g(x)y3 is the charged generalization of the Emden-Fowler equation that is crucial in the study of spherically symmetric shear-free spacetimes. This version arises from the Einstein–Maxwell system for a charged shear-free matter distribution. We integrate this equation and find a new first integral. For this solution to exist, two integral equations arise as integrability conditions. The integrability conditions can be transformed to nonlinear differential equations, which give explicit forms for f(x) and g(x) in terms of elementary and special functions. The explicit forms f(x)1x511x11/5 and g(x)1x611x12/5 arise as repeated roots of a fourth order polynomial. This is a new solution to the Einstein-Maxwell equations. Our result complements earlier work in neutral and charged matter showing that the complexity of a charged self-gravitating fluid is connected to the existence of a first integral.  相似文献   

6.
We examine two electrovac spacetimes, the Kerr-Newman solution and another due to Perjes, which represent single charged, rotating, magnetic objects. Both contain regions with closed timelike curves (CTC), but these regions would be covered by the sources in any physical realisation of the spacetimes, so the CTC would not be detectable. We then study a stationary solution referring to two charged, rotating, magnetic objects. In general there is a region of CTC between the objects no matter how far apart they are. In this case the region would not be covered by the sources, and CTC would be detectable in principle. This paper is dedicated to the memory of Zoltan Perjes.  相似文献   

7.
A lattice Boltzmann equation (LBE) for axisymmetric thermal flows is proposed. The model is derived from the kinetic theory which exhibits several features that distinguish it from other previous LBE models. First, the present thermal LBE model is derived from the continuous Boltzmann equation, which has a solid foundation and clear physical significance; Second, the model can recover the energy equation with the viscous dissipation term and work of pressure which are usually ignored by traditional methods and the existing thermal LBE models; Finally, unlike the existing thermal LBE models, no velocity and temperature gradients appear in the force terms which are easy to realize in the present model. The model is validated by thermal flow in a pipe, thermal buoyancy-driven flow, and swirling flow in vertical cylinder by rotating the top and bottom walls. It is found that the numerical results agreed excellently with analytical solution or other numerical results.  相似文献   

8.
Usually, only Coulomb interactions between charged particles which are independent of time are considered in BBGKY theory of a nonrelativistic plasma. In relativistic case, the induced electromagnetic forces between charged particles which are dependent on time obviously should be considered. A Lorentz-covariant generalized n-time Liouville equation for classical plasma is established. A convenient form applicable to the laboratory frame of this equation is also given. The relativistic BBGKY hierarchy is developed in which both Coulomb and electromagnetic forces between particles are included. A method for solving the relativistic pair correlation equation is given in polarization approximation. A new formula for calculating collision integral in terms of discrete particle Green functions is given. A number of generalized Boltzmann equations for relativistic plasmas are derived.  相似文献   

9.
For the Enskog equation in a box an existence theorem is proved for initial data with finite mass, energy, and entropy. Then, by letting the diameter of the molecules go to zero, the weak convergence of solutions of the Enskog equation to solutions of the Boltzmann equation is proved.  相似文献   

10.
The phenomenon of exchange degeneracy of 2-particle quantum states is studied in detail within the framework of Relativistic Schrödinger Theory (RST). In conventional quantum theory this kind of degeneracy refers to the circumstance that, under neglection of the interparticle interactions, symmetric and anti-symmetric 2-particle states have identical energy eigenvalues. However the analogous effect of RST degeneracy is rather related to the emergence of two types of mixtures (positive and negative) in connection with the vanishing or non-vanishing of certain components of the Hamiltonian (exchange fields). As a consequence, there arise two subcases of RST degeneracy: (i) mixture degeneracy through neglection of the exchange fields and (ii) exchange degeneracy through neglection of the mixture character of matter. The latter RST exchange degeneracy consists in the fact that the RST dynamics admits a certain set of pure-state solutions, as borderline case between positive and negative mixtures, and all these different solutions are generating the same physical situation, e.g., concerning mass eigenvalues and physical densities (of current and energy-momentum). The general results are exemplified by considering the 2-particle states for (scalar) Helium. Analogously as the conventional exchange degeneracy is broken (ortho- and para-Helium) by taking into account the interparticle interactions (e.g., Coulomb forces), the RST degeneracy is broken by simultaneously taking into account the mixture character of matter together with non-zero exchange fields.  相似文献   

11.
A global existence theorem with large initial data inL 1 is given for the modified Enskog equation in 3. The method, which is based on the existence of a Liapunov functional (analog of theH-Boltzmann theorem), utilizes a weak compactness argument inL 1 in a similar way to the DiPerna-Lions proof for the Boltzmann equation. The existence theorem is obtained under certain condition on the behavior of the geometric factorY. The condition onY amounts to the fact that theL 1 norm of the collision term grows linearly when the local density tends to infinity.  相似文献   

12.
Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow   总被引:2,自引:0,他引:2  
Comparison of particle (DSMC) simulation with the numerical solution of the Navier–Stokes (NS) equations for pressure-driven plane Poiseuille flow is presented and contrasted with that of the acceleration-driven Poiseuille flow. Although for the acceleration-driven case DSMC measurements are qualitatively different from the NS solution at relatively low Knudsen number, the two are in somewhat better agreement for pressure-driven flow.  相似文献   

13.
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel capacities reflecting the dynamic dissipation characteristics in the transmission processes, which change into their maximum—the present static mutual information and static channel capacity under the limit case where the proportion of channel length to information transmission rate approaches to zero. All these unified and rigorous theoretical formulas and results are derived from the evolution equations of dynamic information and dynamic entropy without adding any extra assumption. In this review, we give an overview on the above main ideas, methods and results, and discuss the similarity and difference between two kinds of dynamic statistical information theories.  相似文献   

14.
In this article we present an alternative formulation of the spatially homogeneous Boltzmann equation. Rewriting the weak form of the equation with shifted test functions and using Fourier techniques, it turns out that the transformed problem contains only a three-fold integral. Explicit formulas for the transformed collision kernel are presented in the case of VHS models for hard and soft potentials. For isotropic Maxwellian molecules, a classical result by Bobylev is recovered, too.  相似文献   

15.
Entropy dissipation and moment production for the Boltzmann equation   总被引:5,自引:0,他引:5  
LetH(f/M)=flog(f/M)dv be the relative entropy off and the Maxwellian with the same mass, momentum, and energy, and denote the corresponding entropy dissipation term in the Boltzmann equation byD(f)=Q(f,f) logf dv. An example is presented which shows that |D(f)/H(f/M)| can be arbitrarily small. This example is a sequence of isotropic functions, and the estimates are very explicitly given by a simple formula forD which holds for such functions. The paper also gives a simplified proof of the so-called Povzner inequality, which is a geometric inequality for the magnitudes of the velocities before and after an elastic collision. That inequality is then used to prove that f(v) |v|s dt<C(t), wheref is the solution of the spatially homogeneous Boltzmann equation. HereC(t) is an explicitly given function dependings and the mass, energy, and entropy of the initial data.  相似文献   

16.
Recently R. Illner and the author proved that, under a physically realistic truncation on the collision kernel, the Boltzmann equation in the one-dimensional slab [0, 1] with general diffusive boundary conditions at 0 and 1 has a global weak solution in the traditional sense. Here it is proved that when the Maxwellians associated with the boundary conditions atx=0 andx=1 are the same MaxwellianM w , then the solution is uniformly bounded and tends toM w fort.  相似文献   

17.
In dense gas kinetic theory it is standard to express all reduced distribution functions as functionals of the singlet distribution function. Since the singlet distribution function includes aspects of correlated particles as well as describing the properties of freely moving particles, it is here argued that these aspects should more clearly be distinguished and that it is the distribution function for free particles that is the prime object in terms of which dense gas kinetic theory should be expressed. The standard equations of dense gas kinetic theory are rewritten from this point of view and the advantages of doing so are discussed.  相似文献   

18.
We first consider the Boltzmann equation with a collision kernel such that all kinematically possible collisions are run at equal rates. This is the simplest Boltzmann equation having the compressible Euler equations as a scaling limit. For it we prove a stability result for theH-theorem which says that when the entropy production is small, the solution of the spatially homogeneous Boltzmann equation is necessarily close to equilibrium in the entropie sense, and therefore strongL 1 sense. We use this to prove that solutions to the spatially homogeneous Boltzmann equation converge to equilibrium in the entropie sense with a rate of convergence which is uniform in the initial condition for all initial conditions belonging to certain natural regularity classes. Every initial condition with finite entropy andp th velocity moment for some p>2 belongs to such a class. We then extend these results by a simple monotonicity argument to the case where the collision rate is uniformly bounded below, which covers a wide class of slightly modified physical collision kernels. These results are the basis of a study of the relation between scaling limits of solutions of the Boltzmann equation and hydrodynamics which will be developed in subsequent papers; the program is described here.On leave from School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.On leave from C.F.M.C. and Departamento de Matemática da Faculdade de Ciencias de Lisboa, 1700 Lisboa codex, Portugal.  相似文献   

19.
In this paper, we are interested in the derivation of macroscopic equations from kinetic ones using a moment method in a relativistic framework. More precisely, we establish the general form of moments that are compatible with the Lorentz invariance and derive a hierarchy of relativistic moment systems from a Boltzmann kinetic equation. The proof is based on the representation theory of Lie algebras. We then extend this derivation to the classical case and general families of moments that obey the Galilean invariance are also constructed. It is remarkable that the set of formal classical limits of the so-obtained relativistic moment systems is not identical to the set of classical moments quoted in Ref. 21 and one could use a new physically relevant criterion to derive suitable moment systems in the classical case. Finally, the ultra-relativistic limit is considered.  相似文献   

20.
The coupled Boltzmann equations describing the evolution of the velocity distributions of a one-dimensional, two-component gas of Maxwellian molecules are analyzed. When the two species have different masses, the system approaches equilibrium. The complete eigenvalue spectrum of the linearized collision operator is obtained, and is found to exhibit an interesting dependence on the mass ratio. The response of one species to an external field, when the other species is regarded as a host fluid, is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号