首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was focused on investigation of the failure properties of plain woven glass/epoxy composites under off-axis and biaxial tension loading conditions. Four fibre orientations (0°, 15°, 30° and 45° with respect to the load direction) were considered for off-axis tests and two biaxial load ratios for biaxial tests to study failure characteristics and mechanism. Four classical polynomial failure criteria - Tsai-Hill, Hoffman, Tsai-Wu and Yeh-Stratton - were analysed comparatively to predict off-axis and biaxial failure strength of the composites. For failure prediction of the plain woven composites under multiaxial tension loads, the Tsai-Wu criterion was modified by introducing an interaction coefficient F12 obtained from 45° off-axis or biaxial tension tests and the Yeh-Stratton criterion was modified with the interaction coefficient B12 = 0 or obtained from the biaxial tension test. The former criterion was found to have higher accuracy. Finally, according to macroscopic and microscopic studies, the failed specimens showed mostly distinct failure with a specific fracture orientation, mainly exhibiting fibre or fabric tensile fracture mode and a combination of matrix cracking and delamination, both in off-axis and cruciform samples.  相似文献   

2.
The mechanical properties and damage evolutions of carbon/epoxy woven fabric composites with three different fabric architectures, including one plain weave and two twill weave patterns, are experimentally investigated under multiaxial stress states. In particular, the effects of weave patterns are investigated by monotonic and cyclic off-axis tension tests. Both elastic modulus and strength degrade remarkably with increasing off-axis loading angle, while Poisson's ratio is much higher than that measured from on-axis tests and increases with loading strain gradually. Different fabric architectures show limited effects on the modulus and strength under multiaxial stress states, and they are well predicted by transformation equation and Tsai-Wu failure criteria, respectively. However, significantly different failure behaviors are observed in three fabric composites, and microstructure observation shows that fabric architecture affects the stress concentration and the damage development. Smaller crimp ratio and compacted structure postpone the damage development but result in more abrupt failure under multiaxial stress states.  相似文献   

3.
A comprehensive experimental study on the coupling coefficients of unidirectional (UD) and woven fabric glass/epoxy laminates under off-axis tensile loading was conducted in comparison with the theoretical prediction. The capability of the off-axis test to evaluate the elastic constants in the loading direction was reported. Four coupling coefficients were obtained from tests and discussed in comparison with the theoretical prediction. A further comparison of coupling compliance coefficients in compliance matrix was made in order to generalize the influence of off-axis angle on the compliance coefficients. The theoretical prediction agreed well with the experimental data. It is shown that non-monotonic and symmetry phenomena can be observed in the curves of the coupling and compliance coefficients. The results of this experimental study provide a data base of the coupling coefficients of glass/epoxy laminates for engineering application.  相似文献   

4.
This work developed novel jute-yarn, non-crimp, unidirectional (UD) preforms and their composites, with three different types of warp jute yarns of varying linear densities and twists in the dry UD preforms, in order to present a possible solution to the detrimental effects of higher yarn twists and crimp at the warp–weft yarn interlacements of traditional, woven, preform-based composites on their mechanical properties. In the developed UD preforms, warp jute yarns were placed in parallel by using a wooden picture-frame pin board, with the minimal number of glass weft yarns to avoid crimp at the warp–weft yarns interlacements, which can significantly enhance the load-bearing ability of UD composites compared to traditional, woven, preform composites. It was found that an optimal combination of jute warp yarn linear densities and twists in the UD preforms is important to achieve the best possible mechanical properties of newly developed UD composites, because it encourages a proper polymer-matrix impregnation on jute fibres, leading to excellent fibre–matrix interface bonding. Composites made from the 25 lb/spindle jute warp yarn linear density (UD25) exhibited higher tensile and flexural properties than other UD composites (UD20, UD30). All the UD composites showed a much better performance compared to the traditional woven preform composites (W20), which were obviously related to the higher crimp and yarn interlacements, less load-carrying capacity, and poor fiber–matrix interfaces of W20 composites. UD25 composites exhibited a significant enhancement in tensile modulus by ~232% and strength by ~146%; flexural modulus by 138.5% and strength by 145% compared to W20 composites. This reveals that newly developed, non-crimp, UD preform composites can effectively replace the traditional woven composites in lightweight, load-bearing, complex-shaped composite applications, and hence, this warrants further investigations of the developed composites, especially on long-term and dynamic-loading mechanical characterizations.  相似文献   

5.
The present paper addressed the nonlinear stress-strain response in quasi-unidirectional E-glass fabric reinforced polypropylene composites under off-axis tensile loading. A series of monotonic and cyclic loading-unloading tensile tests were carried out. Both irreversible strains and stiffness degradation were observed in cyclic loading-unloading tests, which indicate that the nonlinear response of composites was induced by a combination of damage and plasticity. A coupled damage-plasticity model was employed to describe the nonlinear off-axis tensile stress-strain relation of materials. In this model, a plastic potential function together with associated plastic flow rule were adopted to assess the evolution of plastic strains. The damage variables in forms of stiffness degradation were expressed as a Weibull function of the effective stress. A full suite of model parameters was experimentally determined from cyclic loading-unloading tensile tests. The stress-strain curves predicted by this model agreed well with experimental results.  相似文献   

6.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

7.
The impact behaviour of self-reinforced polypropylene (PP) composites was studied. α and β polymorphs of isotactic PP homopolymer and random copolymer (with ethylene) were used for matrix materials, whereas the reinforcement was a fabric woven from highly stretched split PP yarns. The composite sheets were produced by the film-stacking method and consolidated by hot pressing at 5 and 15 °C above the melting temperature (Tm) of the matrix-giving PP grade. The composite sheets were subjected to static tensile, dynamic falling weight impact and impact tensile tests at room temperature. Dynamic mechanical thermal analysis (DMTA) was also performed on the related composites and their constituents. The results indicated that the β-modification of the PP homopolymer is more straightforward than that of the PP copolymer. Stiffness and strength usually increased while the toughness (tensile impact strength, perforation impact energy) decreased with increasing temperature of consolidation. This was assigned to differences in the failure mode based on fractographic results.  相似文献   

8.
《先进技术聚合物》2018,29(1):111-120
In the present paper, different self‐reinforced polypropylene (PP) composites based on low‐cost commercial woven (w) and non‐woven (nw) fabrics were obtained. Hot compaction (HC) and film stacking (FS) followed by compression molding were used to prepared the composites. The fracture and failure behavior of the different materials was determined under different testing conditions through quasi‐static uniaxial tensile tests, Izod impact experiments and by means of fracture mechanics tests on mode I double‐edge deeply notched tensile specimens. In the case of the composite obtained by film stacking + compression molding (rPP/nw/w‐FS) and the hot‐compacted composite (nw/w‐HC) containing simultaneously woven and non‐woven fabrics, the acoustic emission technique was applied in situ in the tensile tests to determine their consolidation quality and to identify the failure mechanisms responsible for their fracture behavior. It was observed that both composites exhibited relatively similar high consolidation quality. However, the hot‐compacted composite presented a more uniform distribution of failure mechanisms (debonding and fiber fracture) than the film‐stacked composite. The hot‐compacted composite containing both types of reinforcements exhibited the best combination of mechanical (tensile, impact, and fracture) properties. Therefore, this composite appeared as the most promising for structural applications among the different composites investigated.  相似文献   

9.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   

10.
In this work, dense molybdenum disulfide (MoS2) nanosheets were grown onto polydopamine (PDA) functionalized aramid fabric (AF) surface via a simple hydrothermal method to improve the wettability between AF surface and polyhexahydrotriazine (PHT) resin, thus resulting in stronger AF/resin interfacial bonding. The PDA-assisted surface modification on AF generated a high active interface allowing the nucleation and subsequent growth of MoS2. Moreover, this nanosheet-coated reinforcement fiber enabled the viscous liquid of resin precursor to spread over and form intimate contact with its surface, which eventually promoted the formation of strong interfacial bonding between AF-MoS2 and cured resin matrix. In addition, the enhanced interfacial bonding between the reinforcement and matrix generated stable mechanical interlock within the resulting AF-MoS2/PHT composites, and thus, contributed better thermal stability, higher tensile strength, and tribological properties. Compared with AF/PHT composites, the tensile strength and elongation at break of the AF-MoS2/PHT composites increased by 32.5% and 50%, and the average friction coefficient and wear rate of AF-MoS2/PHT composites decreased by 43.9% and 86.3%, respectively. Furthermore, the composites realized the non-destructive recovery of expensive AF at 25 °C. Overall, our study demonstrates a dependable strategy to construct the recyclable AF-MoS2/PHT composites, which exhibit valuable applications in tribology.  相似文献   

11.
The aim of this paper is to study and compare the mechanical behavior of woven basalt and woven glass epoxy composites at high strain rates, in order to assess the possibility of replacing glass fiber composites with basalt fiber composites for aircraft secondary structures, such as radomes, fairings, wing tips, etc. Both composites were produced using the same epoxy matrix, the same manufacturing technique, and with comparable densities, fiber volume fractions, and static stiffnesses. Dynamic tensile and shear experiments were performed using a split Hopkinson tension bar, in addition to reference quasi-static experiments to compare both material behaviors over a wide range of strain rates. Normalized results with respect to the material density and fiber volume fraction showed that basalt epoxy composite had higher elastic stiffness, ultimate tensile strength, ultimate tensile strain, and absorbed energy in tension compared to glass epoxy composite. This suggests a promising potential in replacing glass fibers composites with basalt fiber composites in aircraft secondary structures and, more generally, components prone to impact. However, for the basalt epoxy composite, improvements in the fiber-matrix adhesion and in the manufacturing technique are still required to enhance their shear properties compared to glass fiber composites, and fully exploit the potential of basalt epoxy composites in aeronautical applications.  相似文献   

12.
Self‐reinforced composites based on commercial polypropylene (PP) woven fabrics and a random PP copolymer modified with quartz were obtained by film stacking. The effect of the incorporation of quartz on the materials fracture and failure behavior was studied through uniaxial tensile tests and quasi‐static fracture experiments. Acoustic emission analysis was also performed in situ in the tensile tests. A higher consolidation quality was obtained for the composites containing quartz. In the composite with random PP modified with 5 wt% quartz, the higher consolidation and the better dispersion of quartz particles positively impacted on the materials tensile and fracture behavior. From the results of acoustic emission analysis, fiber fracture appears as the dominant failure mechanism in the investigated composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A novel Eu3+ complex of Eu(DPIQ)(TTA)3 (DPIQ=10H-dipyrido [f,h] indolo [3,2-b] quinoxaline, TTA=2-thenoyltrifluoroacetonate) was synthesized and encapsulated in the mesoporous MCM-41, hoping to explore an oxygen-sensing system based on the long-lived Eu3+ emitter. The Eu(DPIQ)(TTA)3/MCM-41 composites were characterized by infrared spectra (IR), ultraviolet-visible (UV-vis) absorption spectra, small-angle X-ray diffraction (SAXRD), luminescence intensity quenching upon various oxygen concentrations, and fluorescence decay analysis. The results indicated that the composites exhibited the characteristic emission of the Eu3+ ion and the fluorescence intensity of 5D0-7F2 obviously decreased with increasing oxygen concentrations. The oxygen sensing properties of the composites with different loading levels of Eu(DPIQ)(TTA)3 complex were investigated. A sensitivity of 3.04, a short response time of 7 s, and good linearity were obtained for the composites with a loading level of 20 mg/g. These results are the best reported values for optical oxygen-sensing materials based on Eu3+ complexes so far.  相似文献   

14.
CaCO3/PEEK (poly-ether ether ketone) composites were prepared on a twin-screw extruder with different mass ratio of CaCO3/PEEK from 0% to 30%. Four types of particles were used as filler in PEEK matrix. The influence of surface treatment with sulfonated PEEK (SPEEK) of the particles on the mechanical and thermal properties of the composites was studied. The experiments included tensile tests, flexural tests, notched Izod impact tests, TGA, DSC and SEM. The modulus and yield stress of the composites increased with CaCO3 particles loadings. This increase was attributed to the bonding between the particles and the PEEK matrix, as can be proved by the SEM pictures of tensile fracture surface of the composites. The impact strength of the composites was modified by the SPEEK coated on the CaCO3 particle surface. DSC experiments showed that the particle content and surface properties influenced the glass transition temperature (Tg) and melting temperature (Tm) of the composites. The Tg increased with the content of fillers while Tm decreased. In this study the fillers treated were found to give better combination properties, which indicated that SPEEK played a constructive role in the CaCO3/PEEK composites.  相似文献   

15.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

16.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

17.
A hybrid of flax and carbon fibers was considered as an effective way to enhance the mechanical and hydrothermal resistance of flax-reinforced polymer composites. In this study, hybrid composites based on three layers of cross-ply flax fabrics, two layers of unidirectional carbon fabrics, and an epoxy resin were investigated in terms of the tensile, three-point bending, impact, and water absorption properties. The flax fabric reinforcement of the hybrid composites contributed to an improvement in the toughness, whereas the carbon fabric contributed to an improvement in their hydrothermal resistance and overall strength and stiffness. The hybrid composites with carbon fibers on the surface (CFFFC) exhibited brittle failure in the tensile test, whereas those with alternating layers (FCFCF) exhibited greater plastic deformation. In addition, the failure strain of the CFFFC samples showed a negative hybrid effect, whereas that of the FCFCF samples improved 63.5% compared with that of carbon-fiber-reinforced polymer composites. A positive hybrid effect on the impact performance of hybrid reinforced epoxy composites containing the unidirectional carbon fabric and cross-ply flax fabric was observed. At 40 °C and 80% relative humidity, the diffusion rate of water molecules in the FCFCF samples was 16 times that in the CFFFC samples.  相似文献   

18.
Graphene oxide (GO)/epoxy composites cured by aliphatic dibasic acids have been prepared. The influences of structure of aliphatic dibasic acid and loading of GO on curing process and mechanical properties of epoxy composites were studied. The results show that the reaction activities, gel time of corresponding epoxy-acid system and tensile strength of the formed epoxy resins decrease with the increase of the chain length of aliphatic dibasic acids. Both fracture toughness (>1.96 MPa⋅m1/2) and elongations at break (>6%) increase with the increase of the chain length of aliphatic dibasic acids. The introduction of GO is helpful to increase the mechanical properties and the gas transmission coefficient of GO/epoxy composites. A maximum of tensile strength and elongations at break were obtained when the loading of GO is 0.6 wt%. The gas transmission coefficient of GO/epoxy composite increases with the increase of GO loading. The excellent mechanical properties and gas leakage resistance coefficient of the formed epoxy composites provides potential application in many fields where conventional brittle epoxy resins are inapplicable.  相似文献   

19.
During the uniaxial loading of fiber reinforced polymer (FRP) composites, Poisson's ratio (νxy), which is a constant elastic property for isotropic materials, decreases significantly. Micro-damage created within FRP composites as a result of an applied stress causes this decrease. As the level of micro-damage increases, a greater level of reduction in Poisson's ratio occurs. FRP composites, in general, show three main micro-damage types under uniaxial tensile loading, namely, transverse crack, delamination and fiber rupture. To determine micro-damage types which dominantly affects the relevant reduction in Poisson's ratio, glass fiber reinforced cross-ply laminates with three different off-axis ply content are produced and then tested under a uniaxial tensile loading. The Acoustic Emission (AE) signals are concurrently recorded and grouped into three clusters in accordance with their frequency, which is either associated with transverse crack, delamination or fiber rupture. The frequency based clustering of AE signal facilitates detailed investigation of delamination onset and effect of different micro-damage types on Poisson's ratio. It is proven that stacking sequences with a higher number of transverse cracks and delaminations, quantified based on AE signals, show a greater reduction in Poisson's ratio.  相似文献   

20.
This paper presents an experimental investigation on the compression behavior of fiber‐reinforced sandwich composites. In this study, five different types of sandwich composites were prepared with warp knitted spacer fabric as middle layer. Four different types of woven Kevlar fabric structures were used as outer layers (skin) along with one sample of woven basalt fabric. The middle layer used is 100% polyester spacer fabric. Sandwich composites were fabricated using epoxy resin by wet lay‐up method under vacuum bagging technique. Compression behavior, ball burst, and knife penetration were tested for all samples. The effect of outer layer of these composites on the mechanical performance was studied using the compression stress‐strain curves. It is known that spacers have excellent compression elasticity and cushioning. Maximum knife penetration resistance is obtained with twill weave on surface because of maximum yarn cohesion and resin impregnation. Higher amount of cohesive friction results in higher resistance against penetration of sharp objects like the knife edge. Plain and twill fabrics offer sufficient resistance again ball burst. The yarn deformation allows formation of dome shape after ball impact. Maximum impact resistance in ball burst is obtained for plain weave because of highest level of interyarn binding. The results provide new understanding of knitted spacer fabric‐based sandwich composites under compression and impact loading condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号