首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The open-shell cationic stannylene-iron(0) complex 4 ( 4 =[PhiPDippSn⋅Fe⋅IPr]+; PhiPDipp={[Ph2PCH2Si(iPr)2](Dipp)N}; Dipp=2,6-iPr2C6H3; IPr=[(Dipp)NC(H)]2C:) cooperatively and reversibly cleaves dihydrogen at the Sn−Fe interface under mild conditions (1.5 bar, 298 K), in forming bridging hydrido-complex 6 . The One-electron oreduction of the related GeII−Fe0 complex 3 leads to oxidative addition of one C−P linkage of the PhiPDipp ligand in an intermediary Fe−I complex, leading to FeI phosphide species 7 . One-electron reduction reaction of 4 gives access to the iron(−I) ferrato-stannylene, 8 , giving evidence for the transient formation of such a species in the reduction of 3 . The covalently bound tin(II)-iron(−I) compound 8 has been characterised through EPR spectroscopy, SQUID magnetometry, and supporting computational analysis, which strongly indicate a high localization of electron spin density at Fe−I in this unique d9-iron complex.  相似文献   

2.
Various low oxidation state (+2) group 14 element amidohydride adducts, IPr ? EH(BH3)NHDipp (E=Si or Ge; IPr=[(HCNDipp)2C:], Dipp=2,6‐iPr2C6H3), were synthesized. Thermolysis of the reported adducts was investigated as a potential route to Si‐ and Ge‐based clusters; however, unexpected transmetallation chemistry occurred to yield the carbene–borane adduct, IPr ? BH2NHDipp. When a solution of IPr ? BH2NHDipp in toluene was heated to 100 °C, a rare C? N bond‐activation/ring‐expansion reaction involving the bound N‐heterocyclic carbene donor (IPr) transpired.  相似文献   

3.
Coinage metal complexes of the N‐heterocyclic carbene–phosphinidene adduct IPr ? PPh (IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were prepared by its reaction with CuCl, AgCl, and [(Me2S)AuCl], which afforded the monometallic complexes [(IPr ? PPh)MCl] (M=Cu, Ag, Au). The reaction with two equivalents of the metal halides gave bimetallic [(IPr ? PPh)(MCl)2] (M=Cu, Au); the corresponding disilver complex could not be isolated. [(IPr ? PPh)(CuOTf)2] was prepared by reaction with copper(I) trifluoromethanesulfonate. Treatment of [(IPr ? PPh)(MCl)2] (M=Cu, Au) with Na(BArF) or AgSbF6 afforded the tetranuclear complexes [(IPr ? PPh)2M4Cl2]X2 (X=BArF or SbF6), which contain unusual eight‐membered M4Cl2P2 rings with short cuprophilic or aurophilic contacts along the chlorine‐bridged M???M axes. Complete chloride abstraction from [(IPr ? PPh)(AuCl)2] was achieved with two equivalents of AgSbF6 in the presence of tetrahydrothiophene (THT) to form [(IPr ? PPh){Au(THT)}2][SbF6]2. The cationic tetra‐ and dinuclear complexes were used as catalysts for enyne cyclization and carbene transfer reactions.  相似文献   

4.
Abstract

We report the reactions of imidazolin-2-iminato titanium complexes [(ImRN)Ti(NMe2)3] (R = Mes, 2b; R = Dipp, 2c; Mes = mesityl, Dipp = 2,6-diisopropylphenyl) with 2,6-diisopropylaniline in a 1:3 molar ratio to yield the titanium imido complexes of composition [(ImRNH)Ti = N(Dipp)(HNDipp)2] (R = Mes, 3b; R = Dipp, 3c) in good yield by the Ti-Niminato bond cleavage at 60 °C. In contrast, the reaction of [(ImRN)Ti(NMe2)3] with 2,6-diisopropylaniline in a 1:1 molar ratio afforded mono-substituted products [(ImRN)Ti(NMe2)2(HNDipp)] (R = Mes, 4b; R = Dipp, 4c) in good yield. The reaction of [(ImRN)Ti(NMe2)3] with the iminopyrrole ligand [2-(2,6-iPr2C6H3-N = CH)C4H3NH] (NDippPyH) in a 1:1 ratio afforded mixed ligands, titanium complexes [(ImRN)Ti(NMe2)2(NDipp-Py)] (R = tBu, 5a; R = Dipp, 5c) with imidazolin-2-iminato and iminopyrrolide ligands. Molecular structures of 3b, 3c, 4c, 5a, and 5c were determined by single-crystal X-ray analysis. The solid-state structures of 3b and 3c clearly indicate the formation of true Ti = N double bonds, measuring 1.730(2) Å and 1.727(1) Å, respectively. The solid-state structures of 5a and 5c reveal the formation of five-coordinate titanium complexes.  相似文献   

5.
Trimethylamine‐tris(pentafluoroethyl)borane [(C2F5)3BNMe3] ( 1 ) reacts at 190 °C with water under displacement of the trimethylamine ligand to yield the hydroxy‐tris(pentafluoroethyl)borate [(C2F5)3BOH]? ( 2 ). In tributylamine 1 reacts with alkynes HC≡CR to form novel ethynyl‐tris(pentafluoroethyl)borate anions [(C2F5)3BC≡CR]? – R = C6H5 ( 3 ), C6H4CH3 ( 4 ), Si(CH(CH3)2)3 ( 5 ) – in moderate yields. Compound 3 adds water across the triple bond to form the novel anion [(C2F5)3BCH2(CO)C6H5]? ( 6 ). The structures of [(C2F5)3BNMe3], [NMe4][(C2F5)3BOH] and K[(C2F5)3BCH2(CO)C6H5] have been determined by x‐ray crystallography.  相似文献   

6.
The reduction of Ar'GeCl (Ar' = C6H3-2,6-Dipp2; Dipp = C6H3-2,6-Pri2) with LiBH(Bus)3 affords the first heavier group 14 element dimetallene hydride Ar'(H)GeGe(H)Ar' which, upon further reaction with PMe3, yields the base-stabilized isomeric form Ar'(H)2GeGeAr'.PMe3.  相似文献   

7.
The synthesis and characterization of an (arsino)phosphaketene, As(PCO){[N(Dipp)](CH2)}2 (Dipp=2,6-diisopropylphenyl) is reported along with its subsequent reactivity with B(C6F5)3. When reacted in a stoichiometric ratio, B(C6F5)3 drove the insertion of the P=C bond of the phosphaketene into one of the As−N bonds of the arsino functionality, affording an acid-stabilized, seven-membered, cyclic arsaphosphene. In contrast, when catalytic amounts of B(C6F5)3 were employed, dimeric species, which formed through a formal [2+2] cycloaddition of the cyclic arsaphosphene, were generated. The cyclic arsaphosphene product represents the first example of such a compound in which the two substituents are arranged in a cis-configuration.  相似文献   

8.
The versatile cycloaddition chemistry of the Si−Ni multiple bond in the acyclic (amido)(chloro)silylene→Ni0 complex 1 , [(TMSL)ClSi→Ni(NHC)2] (TMSL=N(SiMe3)Dipp; Dipp=2,6-iPr2C6H4; NHC=C[(iPr)NC(Me)]2), toward unsaturated organic substrates is reported, which is both reminiscent of and expanding on the reactivity patterns of classical Fischer and Schrock carbene–metal complexes. Thus, 1:1 reaction of 1 with aldehydes, imines, alkynes, and even alkenes proceed to yield [2+2] cycloaddition products, leading to a range of four-membered metallasilacycles. This cycloaddition is in fact reversible for ethylene, whereas addition of an excess of this olefin leads to quantitative sp2-CH bond activation, via a 1-nickela-4-silacyclohexane intermediate. These results have been supported by DFT calculations giving insights into key mechanistic aspects.  相似文献   

9.
The first divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 3 a , SIPr 3 b ; IPr=C{(NAr)CH}2; SIPr=C{(NAr)CH2}2; Ar=2,6-iPr2C6H3) are reported. Compounds 3 a and 3 b were prepared by the reduction of corresponding chlorides {(NHC)C(Ph)}AsCl2 (NHC=IPr 2 a , SIPr 2 b ) with Mg. Calculations revealed a small HOMO–LUMO energy gap of 3.86 ( 3 a ) and 4.24 eV ( 3 b ). Treatment of 3 a with (Me2S)AuCl led to the cleavage of the As=As bond to restore 2 a , which is expected to proceed via the diarsane [{(IPr)C(Ph)}AsCl]2 ( 4 ). Remarkably, 4 as well as 2 a can be selectively accessed on treatment of 3 a with an appropriate amount of C2Cl6. Moreover, 3 a readily reacts with PhEEPh (E=Se or Te) at room temperature to give {(IPr)C(Ph)}As(EPh)2 (E=Se 5 a ; Te 5 b ), revealing the cleavage of As=As and E−E bonds and the formation of As−E bonds. Such highly selective stepwise oxidation ( 3 a → 4 → 2 a ) and bond metathesis ( 3 a → 5 a , b ) reactions are unprecedented in main-group chemistry.  相似文献   

10.
The divinyldiarsene radical cations [{(NHC)C(Ph)}As]2(GaCl4) (NHC=IPr: C{(NDipp)CH}2 3 ; SIPr: C{(NDipp)CH2}2 4 ; Dipp=2,6‐iPr2C6H3) and dications [{(NHC)C(Ph)}As]2(GaCl4)2 (NHC=IPr 5 ; SIPr 6 ) are readily accessible as crystalline solids on sequential one‐electron oxidation of the corresponding divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 1 ; SIPr 2 ) with GaCl3. Compounds 3 – 6 have been characterized by X‐ray diffraction, cyclic voltammetry, EPR/NMR spectroscopy, and UV/vis absorption spectroscopy as well as DFT calculations. The sequential removal of one electron from the HOMO, that is mainly the As?As π‐bond, of 1 and 2 leads to successive elongation of the As=As bond and contraction of the C?As bonds from 1 / 2 → 3 / 4 → 5 / 6 . The UV/vis spectrum of 3 and 4 each exhibits a strong absorption in the visible region associated with SOMO‐related transitions. The EPR spectrum of 3 and 4 each shows a broadened septet owing to coupling of the unpaired electron with two 75As (I=3/2) nuclei.  相似文献   

11.
N‐Heterocyclic carbene (NHC) complexes of Cd and Hg triflates (OTf) were prepared and their attempted conversion into rare cadmium and mercury hydrides was explored. In contrast to zinc, which forms stable [ZnH]+ complexes with NHCs, the heavier Cd and Hg congeners could not be formed; the increased instability of Cd‐H and Hg‐H units was rationalized with the aid of computations. It was also discovered that the dimeric adduct [IPr?Cd(μ‐OTf)2]2 (IPr=[(HCNDipp)2C:]; Dipp=2,6‐iPr2C6H3) is an active precatalyst for the hydrosilylation and hydroborylation of hindered aldehydes and ketones. The related zinc congener was inactive as a catalyst highlighting a distinct advantage of using heavy Group 12 metals to promote catalytic hydrosilylation/borylation.  相似文献   

12.
Reduction of Ar'AlI2 (Ar' = Ar'= C6H3-2,6-Dipp2; Dipp = C6H3-2,6-Pri2) with KC8 in diethyl ether most probably affords the first "dialuminene", Ar'AlAlAr'; it was characterized by its reaction with toluene which yielded a [2 + 4] cycloaddition product incorporating the Ar'AlAlAr' unit.  相似文献   

13.
The iminophosphine-phosphazene [P(III)-P(V)] heterocyclic adduct [IPr·PN(PCl(2)N)(2)] was prepared via reduction of the cyclic phosphazene [Cl(2)PN](3) in the presence of the carbene donor IPr {IPr = [(HCNDipp)(2)C:], where Dipp = 2,6-(i)Pr(2)C(6)H(3)}. By contrast, the treatment of [Cl(2)PN](3) with the N-heterocyclic olefin IPr═CH(2) yielded the olefin-grafted phosphazene ring [(IPr═CH)P(Cl)N(PCl(2)N)(2)].  相似文献   

14.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

15.
The reaction of Sn(Cl)C(6)H(3)-2,6-Dipp(2) (Dipp = C(6)H(3)-2,6-Pr(i)()(2)) with a stoichiometric amount of potassium in benzene affords 2,6-Pr(i)()(2)-H(3)C(6)SnSnC(6)H(3)-2,6-Pr(i)()(2) (1) as dark blue-green crystals. The compound 1 is a tin analogue of an alkyne. It was characterized by (1)H and (13)C NMR and UV-vis spectroscopy, cyclic voltammetry, combustion analysis and X-ray crystallography. The structural data show that 1 has a trans-bent, planar C(ipso)SnSnC(ipso) skeleton with a Sn-Sn bond distance of 2.6675(4) A and a Sn-Sn-C angle of 125.24(7) degrees. The Sn-Sn distance, which is ca. 0.15 A shorter than a conventional Sn-Sn single bond, and the trans-bent structure indicate the presence Sn-Sn multiple bond character unlike the related singly bonded ArPbPbAr species.  相似文献   

16.
A stable Si(II) dihydride complex, IPr·SiH(2)·BH(3) (IPr = [(HCNDipp)(2)C:]; Dipp = 2,6-(i)Pr(2)C(6)H(3)), was synthesized and preliminary reactivity involving this source of encapsulated silylene is reported.  相似文献   

17.
Reactions of the anionic gallium(I) heterocycle salt, [K(tmeda)][Ga(DAB)] (DAB = {N(Dip)C(H)}2; Dip = C6H3Pri2-2,6), with a series of groups 6-9 and 11 metal halide complexes have given rise to the metal gallyl complexes, [CpCr(IMes){Ga(DAB)}] (IMes = :C{(Mes)NC(H)}2; Mes = mesityl), [M(tmeda){Ga(DAB)}2] (M = Mn, Fe or Co) and [Cu(dppe){Ga(DAB)}] (dppe = 1,2-bis(diphenylphosphino)ethane). The majority of the complexes have been crystallographically characterized. The reactivity of the previously reported copper(I) gallyl complex, [(IPr)Cu{Ga(DAB)}] (IPr = :C{(Dip)NC(H)}2), towards a variety of unsaturated substrates has been explored. Three crystallographically characterized complexes have arisen from this phase of the study, viz. [(IPr)CuCCPh], [(IPr)Cu{Ga(DAB)}(CNBut)] and [(IPr)Cu{κ1-OC(O)C(CNHDip)(NHDip)}]. The results of these investigations show that the reactivity of [(IPr)Cu{Ga(DAB)}] is significantly different to that of related copper boryl complexes.  相似文献   

18.
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes ( 3-E )GaCl4 [( 3-E ).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 ( 1-E ) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] ( 2-E ), in which 1-E binds to the Fe atom in an allylic (η3-EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2-E undergo 1e oxidation with GaCl3 to yield ( 3-E )GaCl4. Spin density analysis revealed that the unpaired electron in ( 3-E ).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of ( 3-E )GaCl4 leads to unprecedented η3-EECvinyl to η3-ECvinylCPh coordination shuttling to form the dications ( 4-E )(GaCl4)2.  相似文献   

19.
N‐(2,6‐Diisopropylphenyl)‐N′‐(2‐pyridylethyl)pivalamidine (Dipp‐N=C(tBu)‐N(H)‐C2H4‐Py) ( 1 ), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp‐N=C(tBu)‐N‐C2H4‐Py}] ( 6 ), [Mg{Dipp‐N=C(tBu)‐N‐C2H4‐Py}2] ( 3 ), and heteroleptic [{(Me3Si)2N}Ae{Dipp‐N=C(tBu)‐N‐C2H4‐Py}], with Ae being Ca ( 2 a ) and Sr ( 2 b ). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β‐metalation and an immediate deamidation reaction yielding [(thf)2Na{Dipp‐N=C(tBu)‐N(H)}] ( 4 a ) or [(thf)2K{Dipp‐N=C(tBu)‐N(H)}] ( 4 b ), respectively, as well as 2‐vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N‐(2,6‐diisopropylphenyl)pivalamidine (Dipp‐N=C(tBu)‐NH2) ( 5 ), or [(thf)4Ca{Dipp‐N=C(tBu)‐N(H)}2] ( 7 ), respectively. The reaction of AN(SiMe3)2 (A=Na, K) with less bulky formamidine Dipp‐N=C(H)‐N(H)‐C2H4‐Py ( 8 ) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 a ) or [(thf)K{Dipp‐N=C(H)‐N‐C2H4‐Py}]2 ( 9 b ), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β‐metalation/deamidation of N‐(2‐pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single‐crystal X‐ray structure analysis and are maintained in solution.  相似文献   

20.
New Benzyl Complexes of the Lanthanides. Synthesis and Crystal Structures of [(C5Me5)2Y(CH2C6H5)(thf)], [(C5Me5)2Sm(CH2C6H5)2K(thf)2], and [(C5Me5)Gd(CH2C6H5)2(thf)] YBr3 reacts with potassium benzyl and [K(C5Me5)] in THF to give KBr and the monobenzyl compound [(C5Me5)2 · Y(CH2C6H5)(thf)] 1 . The analogous reaction with SmBr3 in THF leads to the polymeric product [(C5Me5)2Sm(CH2C6H5)2 ∞ K(thf)2] 2 , with GdBr3 to [(C5Me5)Gd(CH2C6H5)2(thf)] 3 . The structures of 1–3 were determined by X-ray single crystal structure analysis:
  • Space group P1 , Z = 2, a = 851.2(4) pm, b = 952.7(4) pm, c = 1858.6(8) pm, α = 79.90(4)°, β = 77.35(4)°, γ = 73.30(3)°.
  • Space group P1 , Z = 2, a = 903.3(2) pm, b = 1375.9(3) pm, c = 1801.1(4) pm, α = 100.92(3)°, β = 100.77°, γ = 98.25(3)°.
  • Space group P21/n, Z = 8, a = 1458.2(5) pm, b = 927.8(3) pm, c = 3792.9(15) pm, β = 96.83(3)°.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号