首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of metal complex immobilized/decorated porous materials as catalysts has found various applications. As such, finding a new and mild method for synthesis of metal complex immobilized over porous material is of great interest. Immobilized porous materials for styrene oxidation were reported in this work. Immobilized porous material of Cu-Schiff base complex @MIL-101 were described, in which immobilized Cu-Schiff base complex within super cage of a metal-organic framework (MOF)-based porous material, chromium (III) terephthalate MIL-101. They were systematically characterized by using elemental analysis, powder X-ray diffraction, fourier transform infrared spectroscopy, N2 absorption-desorption, and so on, also used as catalyst for the selective oxidation of styrene to benzaldehyde. Comparatively, the immobilized heterogeneous catalyst of Cu-Schiff base complex@MIL-101 acted as an efficient heterostructure catalyst in the oxidation of styrene to benzaldehyde up to six cycles, and showed superior activity for styrene oxidation over MIL-101.  相似文献   

2.
A series of efficient ruthenium chloride (RuCl_3)-anchored MOF catalysts,such as RuCl_3@MIL-101 (Cr)-Sal,and RuCl_3@MIL-101 (Cr)-DPPB, have been successfully synthesized by post-synthetic modification (PSM)of the terminal amino of MIL-101(Cr)-NH_2 with salicylaldehyde, 2-diphenylphosphinobenzaldehyde (DPPBde) and anchoring of Ru (Ⅲ) ions. The stronger coordination electron donor interaction between Ru (Ⅲ) ions and chelating groups in the RuCl_3@MIL-101 (Cr)-DPPB enhances its catalytic performance for CO_2 hydrogenation to formic acid. The turnover number (TON) of formic acid was up to 831 in reaction time of 2 h with dimethyl sulfoxide (DMSO) and water (H_2O) as mixed solvent, trimethylamine (Et_3N) as organic base, and PPh_3 as electronic additive.  相似文献   

3.
A peroxotungstate composite comprising the chromium terephthalate metal–organic framework MIL-101(Cr) and the Venturello peroxotungstate [PO4{WO(O2)2}4]3− (PW4) has been prepared by the impregnation method. The PW4@MIL-101(Cr) composite presents high catalytic efficiency for oxidative desulfurization of a multicomponent model diesel containing the most refractory sulfur compounds present in real fuels (2000 ppm of total S). The catalytic performance of this heterogeneous catalyst is similar to the corresponding homogeneous PW4 active center. Desulfurization efficiency of 99.7% was achieved after only 40 min at 70 °C using H2O2 as an oxidant and an ionic liquid as an extraction solvent ([BMIM]PF6, 2:1 model diesel/[BMIM]PF6). High recycling and reusing capacity was also found for PW4@MIL-101(Cr), maintaining its activity for consecutive oxidative desulfurization cycles. A comparison of the catalytic performance of this peroxotungstate composite with others previously reported tungstate@MIL-101(Cr) catalysts indicates that the presence of active oxygen atoms from the peroxo groups promotes a higher oxidative catalytic efficiency in a shorter reaction time.  相似文献   

4.
采用实验与分子模拟结合的方法研究298 K下CO2在氨基改性得到的MIL-101(Cr)-NH2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO2的吸附位点,使MIL-101(Cr)-NH2具有较高CO2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO2的吸附位点,使MIL-101(Cr)-ED也具有较高CO2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH2,导致其对CO2的吸附容量少于MIL-101(Cr)-NH2。  相似文献   

5.
采用实验与分子模拟结合的方法研究298 K下CO_2在氨基改性得到的MIL-101(Cr)-NH_2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH_2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH_2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO_2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO_2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO_2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO_2的吸附位点,使MIL-101(Cr)-NH_2具有较高CO_2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO_2的吸附位点,使MIL-101(Cr)-ED也具有较高CO_2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO_2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH_2,导致其对CO_2的吸附容量少于MIL-101(Cr)-NH_2。  相似文献   

6.
Transition metal-substituted polyoxometalates (POMs) were filled into a metal–organic framework (MOF) to construct a series of POM@MOF composites (PMo12O40@MIL-101, PMo11VO40@MIL-101, PMo10V2O40@MIL-101). The composite materials possess ultra-high adsorption ability, especially for PMo10V2O40@MIL-101, with an adsorption capacity of 912.5 mg·g−1 for cationic antibiotic tetracycline in wastewater, much higher than that of isolated MIL-101(Fe) and the commonly used adsorption materials, such as activated carbon and graphene oxide. In particular, they can be used as efficient photocatalysts for the photodegradation of antibiotics under visible light irradiation. The complete photodegradation of the adsorbed species can induce the facile reusability of these composites for multiple cycles. This work opens an avenue to introduce POMs into an MOF matrix for the simultaneous adsorption and photodegradation of antibiotics.  相似文献   

7.
制备了多种金属-有机骨架(MOF)材料,采用浸渍-化学还原法制备了非晶态Ru-B/MOF催化剂,考察了它们在苯部分加氢反应中的催化性能.催化性能评价结果表明,这些催化剂的初始反应速率(r0)顺序为Ru-B/MIL-53(Al)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-53(Cr)Ru-B/MIL-101(Cr)Ru-B/MIL-100(Fe),环己烯初始选择性(S0)顺序为Ru-B/MIL-53(Al)≈Ru-B/MIL-53(Cr)Ru-B/UIO-66(Zr)-NH2Ru-B/MIL-101(Cr)Ru-B/MIL-53(Al)-NH2Ru-B/UIO-66(Zr)≈Ru-B/MIL-100(Fe).催化性能最好的Ru-B/MIL-53(Al)催化剂上的r0和S0分别为23 mmol·min-1·g-1和72%.采用多种手段,对催化性能差异最为显著的Ru-B/MIL-53(Al)和Ru-B/MIL-100(Fe)催化剂的物理化学性质进行了表征.发现MIL-53(Al)载体能够更好地分散Ru-B纳米粒子,粒子的平均尺寸为3.2 nm,而MIL-100(Fe)载体上Ru-B纳米粒子团聚严重,粒径达46.6 nm.更小的粒径不仅能够提供更多的活性位,而且也有利于环己烯选择性的提高.对Ru-B/MIL-53(Al)催化剂的反应条件进行了优化,在180°C和5 MPa的H2压力下,环己烯得率可达24%,展示了MOF材料用作苯部分加氢催化剂载体的良好前景.  相似文献   

8.
A new heterogeneous Brønsted solid acid catalyst was prepared by tandem post-functionalization of MIL-101(Cr) and utilized for acetic acid esterification and alcoholysis of epoxides under solvent-free conditions. First, MIL-101(Cr) was functionalized with pyrazine to achieve MIL-101(Cr)-Pyz. Afterwards, the nucleophilic reaction of MIL-101(Cr)-Pyz with 1,3-propane sultone and next acidification with diluted sulfuric acid gave MIL-101(Cr)-Pyz-RSO3H Brønsted solid acid catalyst. Various characterization methods such as Fourier transformation infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), elemental analysis (CHNS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersiveX-ray(EDX) spectroscopy, thermal analysis (TGA/DTA), acid–base titration, and N2 adsorption/desorption analysis were employed to fully characterize the prepared catalyst. The catalyst showed high activity compared to unmodified MIL-101(Cr) in both catalytic acetic acid esterification and alcoholysis of epoxides. It can also be readily isolated from the reaction mixture and reused three times without major decrease in its activity.  相似文献   

9.
Zinc monosubstituted Keggin heteropolyanion [PZnMo2W9O39]5? was electrostatically bound to nanocages of MIL-101 polymer matrix. The Zn-POM@MIL-101 catalyst was characterized by XRD, N2 adsorption, atomic absorption (AAS), and FT-IR spectroscopic methods. The catalytic activity of the new composite material, Zn-POM@MIL-101, was assessed in the oxidation of alkenes using aqueous hydrogen peroxide as oxidant. Zn-POM@MIL-101/H2O2 catalytic system demonstrated good catalytic activity in the oxidation reactions. Zn-POM@MIL-101 was reusable for three catalytic cycles. While the MIL-101 matrix is an active catalyst in these oxidation reactions, the presence of Zn-POM significantly changed the selectivity and reaction times.  相似文献   

10.
This work spotlights the recently discovered photoelectrocatalytic properties of iron-based metal–organic frameworks (MOFs) for water oxidation reaction (WOR) under visible light irradiation. The low efficiency of WOR is one of the biggest difficulties faced by photoelectrochemical solar energy conversion; the development of new photoanodes for WOR is greatly desired. In view of the fact that a higher efficiency for WOR was forecast thanks to the peculiar properties of MOFs, such as a highly ordered framework and homogenous porous structure, the photoelectrodes based on MIL-101(Fe) containing photo-active iron(III) clusters have been fabricated by using a drop-casting method and applied to photoelectrochemical water oxidation as photoanodes. XRD measurements revealed the successful formation of MIL-101(Fe) electrodes while retaining their framework structures. From the results of photoelectrochemical measurements, the optimal thickness of the MIL-101(Fe) electrodes was determined to be ca. 60 μm, and the optimized MIL-101(Fe) electrode was found to promote photoelectrochemical WOR under visible light irradiation more efficiently than conventional α-Fe2O3 electrodes. Moreover, electrochemical impedance spectroscopy measurements demonstrated a lower resistance of charge transfer at the interface between the MOF surface and the electrolyte, resulting in better photoelectrochemical performance of the MIL-101(Fe) electrode.  相似文献   

11.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上, 制备了Pt/MIL-101(Cr)催化剂, 并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明, Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0wt%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能, 在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

12.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上,制备了Pt/MIL-101(Cr)催化剂,并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明,Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能,在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

13.
《印度化学会志》2021,98(11):100204
Amino-functionalized magnetic MIL-101(Cr) was prepared via a one-step solvothermal method, characterized, and applied in adsorptive Sb(III) removal. The effects of solution pH, adsorbent dosage, and coexisting substances on the adsorption of Sb(III) by MIL-101(Cr)–NH2/MnFe2O4 were studied. The adsorption kinetics were analyzed using pseudo-first order, pseudo-second order, intraparticle diffusion, and Elovich models, while Freundlich and Langmuir isotherm models were used to fit the experimental data. The pseudo-second-order kinetic model provided the best fit for the kinetic data. The maximum adsorption capacity of MIL-101(Cr)–NH2/MnFe2O4 for Sb(III) was 91.07 ​mg/g, as calculated using the Langmuir adsorption isotherm model. Thermodynamic analysis revealed that the adsorption of antimony onto MIL-101(Cr)–NH2/MnFe2O4 is spontaneous and endothermic, while response surface optimization revealed that the optimal conditions for Sb(III) adsorption by MIL-101(Cr)–NH2/MnFe2O4 are an adsorbent loading of 222.55 ​mg/L, a pH of 4.5, and a temperature of 294.59 ​K. The predicted adsorption capacity of MIL-101(Cr)–NH2/MnFe2O4 for Sb(III) is only a 1.8% deviation from the actual value. Furthermore, MIL-101(Cr)–NH2/MnFe2O4 exhibits strong magnetism, allowing it to be separated from wastewater using a magnet. Finally, a preliminary economic analysis showed that the cost of treating a ton wastewater containing 25 ​mg/L antimony using this composite would be 26.24 USD. Thus, MIL-101(Cr)–NH2/MnFe2O4 is promising for treatment of Sb(III)-containing wastewater.  相似文献   

14.
15.
Microwave irradiation is an effective method for faster heating to shorten reaction time of oxidative valorization of lignin. However, studies using microwave irradiation for lignin oxidation all employ homogeneous catalysis. Thus, this study aims to investigate heterogeneous catalytic oxidation of lignin under microwave irradiation. Especially, metal organic frameworks (MOFs) are adopted as transition metal-containing heterogeneous catalysts for lignin oxidation. In particularly, MOFs (MIL-101 (Cr), MIL-101 (Fe), UiO-66, HKUST-1, and MOF-801) are also prepared using microwave irradiation and used as for oxidative conversion of a model lignin compound, vanillyl alcohol (VAL), to the valuable products, vanillin (VN) and vanillic acid (VAC), using H2O2 as an oxidant. While the tested MOFs all exhibit catalytic activities for VAL conversion to VN/VAC, MIL-101 and MOF-801 appear to be relatively effective. Through investigating the effect of temperature, VAL conversion to VN/VAC is less favorable at higher temperature possibly due to degradation of H2O2 at high temperatures. While a higher dosage of H2O2 increases VAL conversion, the additionally added H2O2 seems to further oxidize VN to VAC instead of converting more VAL to VN. Through the EPR analyses, the mechanism of VAL conversion to VN/VAC may be attributed to both the OH-based and non-OH? routes. The most effective MOF, MOF-801, also exhibited very similar catalytic activities over several cycles. The results indicate that MOFs can convert VAL to valuable products of VN and VAC within a very short time (10 min) under microwave irradiation. MOF-801 was also validated as a promising MOF for VAL conversion.  相似文献   

16.
A series of Cr-based metal–organic framework MIL-101-SO3H bearing sulfonic acid functional groups were utilized for the immobilization of catalytically active copper species via a post-synthetic metalation method. The novel materials were fully characterized by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), the Brunauer–Emmett–Teller method, and thermogravimetric analysis. XPS and the EDX element map both suggested that Cu2+ is coordinately bonded to the MIL-101-SO3H, which forms the MIL-101-SO3@Cu structure. The obtained copper-doped MIL-101-SO3@Cu-1, MIL-101-SO3@Cu-2, and MIL-101-SO3@Cu-3 catalysts were utilized in the selective oxidation of alcohols and epoxidation of olefins using molecular oxygen as an oxidant. Catalytic aerobic oxidation optimization showed that MIL-101-SO3@Cu-1 is the optimal catalyst and it can be reused ten times without compromising the yield and selectivity.  相似文献   

17.
The porous nano-sized metal–organic framework (nanoMOF) and its proper surface modification could greatly promote the drug loading capability and introduce biocompatibility, biodegradability, and targeting functions into nano-drug delivery systems. Herein, the HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was successfully fabricated through supramolecular and coordination interactions from three building blocks, including hierarchically porous MIL-101_NH2 (Fe)-P nanoMOF, phosphite-modified adamantane (ADA-PA), and β-cyclodextrin (β-CD)-modified hyaluronic acid (HACD). The obtained HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle was nano-sized and highly stable in physiological fluids. The porous structure of HACD@ADA-PA/MIL-101_NH2 (Fe)-P nanoparticle could effectively load the commercial chemotherapeutic drug doxorubicin (DOX) with an encapsulation rate of 41.20 % and a loading rate of 48.84 %. The obtained drug-loaded HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle was pH-sensitive and relatively stable at neutral condition (pH 7.2) but could release DOX in a controlled way in subacid solution at pH 5.7. The simulated in vitro DOX release experiment signified that the HACD@ADA-PA/MIL-101_NH2 (Fe)-P@DOX nanoparticle could realize the controlled release of DOX in tumor issues.  相似文献   

18.
We present a facile approach to encapsulate functional porous organic cages (POCs) into a robust MOF by an incipient-wetness impregnation method. Porous cucurbit[6]uril (CB6) cages with high CO2 affinity were successfully encapsulated into the nanospace of Cr-based MIL-101 while retaining the crystal framework, morphology, and high stability of MIL-101. The encapsulated CB6 amount is controllable. Importantly, as the CB6 molecule with intrinsic micropores is smaller than the inner mesopores of MIL-101, more affinity sites for CO2 are created in the resulting CB6@MIL-101 composites, leading to enhanced CO2 uptake capacity and CO2/N2, CO2/CH4 separation performance at low pressures. This POC@MOF encapsulation strategy provides a facile route to introduce functional POCs into stable MOFs for various potential applications.  相似文献   

19.
Metal–organic framework sorbents [MIL-100(Fe), MOF-235(Fe)], Fe3O4 nanoparticles and metal–organic framework loaded on iron oxide nanoparticles [Fe3O4@MIL-100(Fe) and Fe3O4@MOF-235(Fe)] were prepared and examined for ciprofloxacin (CIP) removal. The results showed that sorption kinetics of CIP by Fe3O4@MIL-100(Fe) follows the Elovich and pseudo-second-order models indicating that the sorption is both chemisorption and physical adsorption, whereas the sorption to other sorbents occurs mainly by physical sorption. The sorption isotherm studies revealed that Langmuir model provided the best fit to all the experimental data. The thermodynamic studies showed that CIP removal is spontaneous (Δ = 2.28 kJ/mol) and endothermic (Δ = 18.39 kJ/mol). It was also found that among the sorbents investigated for CIP removal, Fe3O4@MIL-100(Fe) has the highest maximum monolayer adsorption capacity of 322.58 mg/g.  相似文献   

20.
《中国化学快报》2023,34(2):107404
Hydroxyl radicals (?OH) generated on anode play a vital role in electrochemical oxidation (EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction (OER), we supposed an anode-selection strategy to stabilize deeply oxidized states (*O and *OOH) which are beneficial to generating ?OH. To verify the hypothesis, a candidate anode component (MIL-101(Cr), a well-known metal-organic framework with active variable-valence transition metal centers) was used to coat Ti/TiO2 plate to fabricate anodes. Compared to TiO2(101) plane on undecorated anode surface, fast and complete removal of aniline and phenol, and improved energy utilization were achieved on MIL-101(Cr)-coated-Ti/TiO2 anode. Mechanism investigation, including pollutant degradation pathways, showed the predominate contribution (69.60%–75.13%) of ?OH in pollutant mineralization. Density functional theory (DFT) computations indicated Cr site in MIL-101(Cr) was more conducive to stabilizing *O and *OOH, leading to thermodynamical spontaneous generation of ?OH. This work opens up an exciting avenue to explore ?OH production, and supplies a useful guidance to the development of anode materials for EO process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号