首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Herein, an electrochemiluminescence (ECL) aptasensor for carcinoembryonic antigen (CEA) detection was developed based on Au-Ag/g-C3N4 nanocomposites (NCs), which were synthesized by decorating graphitic carbon nitride (g-C3N4) nanosheets with alloy-structured Au-Ag bimetallic nanoparticles (NPs) via one-step in situ chemical reduction. As ECL sensing platform, Au-Ag/g-C3N4 NCs could significantly improve the ECL intensity of luminol due to the good conductivity of Au-Ag NPs, electrocatalytic activity for oxygen evolution reaction (OER) and the ability to adsorb luminol via π stacking interaction. In addition, it could load the thiol terminated aptamers of CEA via Au-S or Ag-S bonds. In the presence of CEA, the ECL response of the proposed biosensor decreased significantly due to the fact that the assembled protein layers hindered the electron transfer and the diffusion of ECL reactants toward the electrode surface. The proposed ECL sensor exhibited a good linear relationship with CEA in the range of 1.0–1.0 × 10?6 ng/mL with a detection limit of 8.9 × 10?7 ng/mL. The satisfactory results were obtained in the detection of CEA in human serum samples.  相似文献   

2.
《Electroanalysis》2006,18(22):2194-2201
A new amperometric immunobiosensor for carcinoembryonic antigen (CEA) determination in human serum was developed via encapsulation of horseradish peroxidase‐labeled carcinoembryonic antibody (HRP‐anti‐CEA) in a gold nanoparticles/DNA composite architecture. The presences of gold nanoparticles provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody–antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐CEA and CEA in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface. Under optimal conditions, the current change obtained from the labeled HRP relative to H2O2 system was proportional to the CEA concentration in two linear ranges from 0.5 to 15 ng/mL and 15 to 300 ng/mL with a detection limit of 0.1 ng/mL (at 3δ). The precision and reproducibility are acceptable with the intraassay CV of 6.3% and 4.7% at 8 and 60 ng/mL CEA, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 9 days. Moreover, the proposed immunosensors were used to analyze CEA in human serum specimens. Analytical results of clinical samples show the developed immunoassay has a promising alternative approach for detecting CEA in the clinical diagnosis.  相似文献   

3.
Cardiac Troponin I (cTnI) is a preferred biomarker to diagnose acute myocardial infarction which is one of the leading risks to health globally due to its short term. However, clinical analyzers are difficult to achieve its on-site quantitative detection. A novel label-free aptasensor was constructed to realize ultrasensitive and rapid recognition of cTnI. A nanocubic AuNPs/In2O3 composite was designed to provide synergistic effects of abundant active sites and signal magnification for aptamers grafting. Relying on a conductance-dependence strategy, this aptasensor can achieve the quantitative detection within 10 min, which is much faster than state-of-the-art analyzers, as well as exhibiting an ultrawide linear range of 0.1–1000 ng/mL and a low detection limit of 0.06 ng/mL with an excellent selectivity in the analysis of human serum.  相似文献   

4.
《中国化学快报》2023,34(6):107957
Herein, an intense electrochemiluminescence (ECL) was achieved based on Pt hollow nanospheres/rubrene nanoleaves (Pt HNSs/Rub NLs) without the addition of any coreactant, which was employed for ultrasensitive detection of carcinoembryonic antigen (CEA) coupled with an M-shaped DNA walker (M-DNA walker) as signal switch. Specifically, in comparison with platinum nanoparticles (Pt NPs), Pt HNSs revealed excellent catalytic performance and pore confinement-enhanced ECL, which could significantly amplify ECL intensity of Rub NLs/dissolved O2 (DO) binary system. Then, the tracks and M-DNA walker were confined on the Pt HNSs simultaneously to promote the reaction efficiency, whose M-structure boosted the interaction sites between walking strands and tracks and reduced the rigidity of their recognition. Once the CEA approached the sensing interface, the M-DNA walker was activated based on highly specific aptamer recognition to recover ECL intensity with the assistance of exonuclease Ⅲ (Exo Ⅲ). As proof of concept, the “on-off-on” switch aptasensor was constructed for CEA detection with a low detection limit of 0.20 fg/mL. The principle of the constructed ECL aptasensor also enables a universal platform for sensitive detection of other tumor markers.  相似文献   

5.
《Electroanalysis》2018,30(8):1734-1739
The present study describes a novel electrochemical aptasensor for detection of carcinoembryonic antigen (CEA), a key cancer biomarker. The sensing strategy relied on the CEA‐induced bridge assembly, as a physical barrier, on the surface of gold electrode, resulting in a significant increase of the sensor sensitivity. Under optimal conditions, the aptasensing platform showed a wide linear range (3 pg/mL to 40 ng/mL) and a low detection limit (0.9 pg/mL). Some possible interfering materials were also assessed and the results indicated that the designed aptasensor had good specificity toward CEA. The quantitation of CEA in the spiked human serum samples confirmed the reliability and applicability of the electrochemical aptasensor. So, the developed sensing method has a potential application in the clinical diagnosis.  相似文献   

6.
《Electroanalysis》2017,29(12):2832-2838
In this study, a bimetallic nanomaterial‐based electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) cancer biomarkers at the same time. CEA and VEGF biomarkers are indicators for colon and breast cancers and stomach cancers, respectively. During the study, gold nanoparticle (AuNp), lead nanoparticle (PbNp), copper nanoparticle (CuNp) and magnetic gamma iron(III)oxide (γFe2O3 Np) were synthesized, characterized and used together for the first time in the structure of an electrochemical biosensor based on anti‐CEA and anti‐VEGF. For this purpose, Au SPE based sandwich immunosensor was fabricated by using labeled anti‐CEA (labeled with Pb+2) and labeled anti‐VEGF (labeled with Cu+2). As a result, CEA and VEGF biomarkers were detected following the oxidation peaks of label metals (Pb+2 and Cu+2) by using differential pulse voltammetry. After the experimental parameters were optimized, the linear range was found in the concentration range between 25 ng/mL and 600 ng/mL with the relative standard deviation (RSD) value of (n=3 for 600 ng/mL) 3.33 % and limit of detection (LOD) value of 4.31 ng/mL for CEA biomarker. On the other hand, the linear range was found in the concentration range between 0.2 ng/mL and 12.5 ng/mL with the RSD value of (n=3 for 12.5 ng/mL) 5.31 % and LOD value of 0.014 ng/mL for VEGF biomarker. Lastly, sample application studies for synthetic plasma sample and interference studies with dopamine, ascorbic acid, BSA, cysteine and IgG were carried out.  相似文献   

7.
Li Q  Tang D  Tang J  Su B  Huang J  Chen G 《Talanta》2011,84(2):538-546
A feasible and practicable amperometric immunoassay strategy for sensitive screening of carcinoembryonic antigen (CEA) in human serum was developed using carbon nanotube (CNT)-based symbiotic coaxial nanocables as labels. To construct such a nanocable, a thin layer of silica nanoparticles was coated on the CNT surface by sonication and sol-gel methods, and then colloidal gold nanoparticles were assembled on the amino-functionalized SiO2/CNTs, which were used for the label of horseradish peroxidase-anti-CEA conjugates (HRP-anti-CEA-Au/SiO2/CNT). In the presence of analyte CEA, the sandwich-type immunocomplex was formed on an anti-CEA/Au/thionine/Nafion-modified glassy carbon electrode by using HRP-anti-CEA-Au/SiO2/CNTs as detection antibodies. To embody the advantages of the protocol, the analytical properties of variously modified electrodes were compared in detail on the basis of different nanolabels. Under optimal conditions, the cathodic peak currents of the electrochemical immunosensor were proportional to the logarithm of CEA concentration over the range from 0.01 to 12 ng mL−1 in pH 5.5 HAc-NaAc containing 5 mM H2O2. At a signal-to-noise ratio of 3, the detection limit (LOD) is 5 pg mL−1 CEA. Intra- and inter-assay coefficients of variation were below 9.5%. Meanwhile, the selectivity and stability of the immunosensor were acceptable. In addition, the technique was evaluated by spiking CEA standards in pH 7.4 PBS and with 35 clinical serum specimens, receiving excellent accordance with results from commercially available electrochemiluminescent enzyme-linked immunoassay.  相似文献   

8.
A novel electrochemical detection approach for platelet-derived growth factor(PDGF) via "sandwich"structure is reported in this paper. 3D-4MgCO_3 Mg(OH)_2 4H_2O-Au NPs inorganic hybrid composite was utilized as immobilized substrate for sensitive PDGF detection and Pt-Au bimetallic nanoparticles were labelled on PDGF aptamer to indirectly detect PDGF for the first time. The proposed aptasensor exhibited a high catalytic efficiency towards reduction of H_2O_2, hence the sensitive detection of PDGF was achieved.Results showed that the aptasensor exhibited excellent linear response to PDGF, in the range of 0.1 pg/m L–10 ng/m L(4 fmol/L–400 pmol/L), with detection limit of 0.03 pg/m L(1.2 fmol/L).  相似文献   

9.
An ultrasensitive photoelectrochemical (PEC) immunoassay of cancer biomarker carcinoembryonie antigen (CEA) is proposed that uses rhombic titanium dioxide nanocrystals (TiO2 NCs) coupled with Ab2–RGO-Ru bioconjugate, which featured CEA signal antibody (Ab2) and ruthenium tris(bipyridine) (Ru complex) labels linked to reduced graphene oxide (RGO) for signal amplification. Herein, the Ru complex acts as an electron donor, while RGO serves as an electron acceptor which facilitates charge separation and suppresses recombination of photoexcited electron–hole pairs in the hybridized species. The rhombic TiO2 NCs were fabricated through a solvothermal technique in anhydrous ethanol, followed by spin-coating process and calcination, an ITO/TiO2 electrode was obtained. Chitosan (CS) and glutaraldehyde (GLD) were used to modify the prepared ITO/TiO2 electrode to covalently immobilize antibodies. With a sandwich-type immunoreaction, CEA and Ab2–RGO-Ru were conjugated successively to form a sandwich-type immunocomplex. Thus, a sandwich-type PEC immunosensor was fabricated for the detection of CEA was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The proposed PEC immunosensor showed high sensitivity, selectivity, excellent stability, and good reproducibility, and thus has great potential to be used for other biological assays.  相似文献   

10.
Nitrogen-doped TiO2 nanocrystals (N−TiO2 NCs) were simply synthesized and then functionalized with streptavidin for highly sensitive electrochemical immunoassay of tumor marker. Scanning electron microscopy, transmission electron microscopy, static water contact angle, and cyclic voltametric measurement were adapted to examine the properties of N−TiO2 NCs and resultant immunosensor. The functionalized N−TiO2 NCs sensing platform shows high electrochemical conductivity, large surface area and excellent hydrophilicity. The features make them to produce high current response, capture more antibody molecules, and maintain the bioactivity of immobilized antibodies. By means of carcinoembryonic antigen (CEA) as model tumor marker, a wide linear range of 0.005–3 ng/mL and a low detection limit of 0.005 ng/mL (signal-to-noise ratio of 3) were achieved by the proposed CEA immunosensor. Furthermore, the resultant CEA immunosensor displays high specificity and was employed to determine CEA in clinical serum samples.  相似文献   

11.
Han J  Zhuo Y  Chai YQ  Mao L  Yuan YL  Yuan R 《Talanta》2011,85(1):130-135
A new label-free amperometric immunosensor was developed for detection of carcinoembryonic antigen (CEA) based on chitosan-ferrocene (CS-Fc) and nano-TiO2 (CS-Fc + TiO2) complex film and gold nanoparticles-graphene (Au-Gra) nanohybrid. CS-Fc + TiO2 composite membrane was first modified on a bare glass carbon electrode. Then Au-Gra nanohybrid was formed on the CS-Fc + TiO2 membrane by self-assembly strategy. Next, further immobilization of anti-CEA was constructed according to the strong interaction between Au-Gra and the amido groups of anti-CEA. Since Au-Gra nanohybrid films provided a congenial microenvironment for the immobilization of biomolecules, the surface coverage of antibody protein could be enhanced and the sensitivity of the immunosensor has been improved. The good electronic conductive characteristic might be attributed to the synergistic effect of graphene nanosheets and Au NPs. The modified process was characterized by scanning electron microscope (SEM) and cyclic voltammetry (CV). Under optimized conditions, the resulting biosensor displayed good amperometric response to CEA with linear range from 0.01 to 80 ng/mL and a detection limit of 3.4 pg/mL (signal/noise = 3). The results demonstrated that the immunosensor has advantages of high conduction, sensitivity, and long life time. This assay approach showed a great potential in clinical applications and detection of low level proteins.  相似文献   

12.
A novel tracer, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) functionalized graphene sheet (GS) composite (GS–TCDA), is employed to label the secondary anti-thrombin aptamer (TBA) to construct an ultrasensitive electrochemiluminescent sandwich-type aptasensor. The GS provided large surface area for loading abundant PTCDA and TBA with good stability and biocompatibility. Because of the excellent electroconductivity of GS and the desirable optical properties of PTCDA, the as-formed Apt II bioconjugate considerably amplified the electrochmiluminescence (ECL) signal of peroxydisulfate (S2O82−) and worked as the desirable label for Apt II. On the basis of the considerably amplified ECL signal and sandwich format, an extremely wide range from 1 fM to 1 nM with an ultralow detection limit of 0.33 fM for thrombin was obtained. Additionally, the selectivity and stability of the proposed aptasensor were also excellent. Thus, this procedure has great promise for detection of thrombin present at ultra-trace levels during early stage of diseases.  相似文献   

13.
《Analytical letters》2012,45(4):592-605
This work reports an efficient method to quantify the Hepatitis B surface antigen and α-fetoprotein in human serum using a functional magnetic nanoparticle-assisted sandwich-type electrochemical immunoassay. The Fe 3 O 4 magnetic nanoparticles were first modified with carboxyl functional groups to permit stable bioconjugation to the amine groups of most biological targets. The primary antibodies were then covalently stained on the surface of the functional magnetic nanoparticles, followed by the analyte and secondary antibodies, resulting in a sandwich-type (antibody-antigen-antibody/enzyme) immune complex. The secondary antibodies were labeled with horseradish peroxidase for the catalytic oxidation of 2-aminophenol to yield electrochemically reducible molecules. The separation using an external magnetic field guaranteed fast and reliable purification and enrichment of analytes. Quantitative analysis was performed upon representative clinical targets: Hepatitis B surface antigen and α-fetoprotein in human serum. The detection limits were 0.06 ng/mL for the former and 0.5 ng/mL for the latter, which were about 10 times lower than values obtained by conventional enzyme-linked immunosorbent assays. The reported method may be adopted as a general strategy for the sensitive and selective determination of additional proteins and biological molecules.  相似文献   

14.
Zhang M  Ge S  Li W  Yan M  Song X  Yu J  Xu W  Huang J 《The Analyst》2012,137(3):680-685
In this work, we reported a simple and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor for carcinoembryonic antigen (CEA) on a gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE). The Ru-silica (Ru(bpy)(3)(2+)-doped silica) capped nanoporous gold (NPG) (Ru-silica@NPG) composite was used as an excellent label with amplification techniques. The NPG was prepared with a simple dealloying strategy, by which silver was dissolved from silver/gold alloys in nitric acid. The primary antibody was immobilized on the AuNPs modified electrode through l-cysteine and glutaraldehyde, and then the antigen and the functionalized Ru-silica@NPG composite labeled secondary antibody were conjugated successively to form a sandwich-type immunocomplex through the specific interaction. The concentrations of CEA were obtained in the range from 1 pg mL(-1) to 10 ng mL(-1) with a detection limit of 0.8 pg mL(-1). The as-proposed ECL immunosensor has the advantages of high sensitivity, specificity and stability and could become a promising technique for tumor marker detection.  相似文献   

15.
In this work, an advanced sandwich-type electrochemical aptasensor for thrombin was proposed by integrating hemin/G-quadruplex with functionalized graphene-Pd nanoparticles composites (PdNPs-RGs). The hemin/G-quadruplex formed by intercalating hemin into thrombin binding aptamer (TBA), firstly acted as a NADH oxidase, assisting the oxidation of NADH to NAD+ accompanying with the generation of H2O2 in the presence of dissolved O2. Subsequently, the hemin/G-quadruplex acted as HRP-mimicking DNAzyme that rapidly bioelectrocatalyze the reduction of the produced H2O2. At the same time, the Pd nanoparticles supported on p-iodoaniline functionalized graphene were also adopted to catalyze the reduction of H2O2. Thus, with the dual catalysis, a dramatically amplified electrochemical signal could be obtained. Besides, the avidin–biotin system for binding aptamer sequences on electrodes not only improved the sensitivity of thrombin analysis but also obtained an acceptable repeatability of the aptasensor. With several factors mentioned above, a wide linear ranged from 0.1 pM to 50 nM was acquired with a relatively low detection limit of 0.03 pM (defined as S/N = 3). These excellent performances provided our approach a promising way for ultrasensitive assay in electrochemical aptasensors.  相似文献   

16.
The demand for point-of-care testing (POCT) is growing dramatically, especially for district where health facilities are poorly staffed, poorly skilled and ill-equipped. As a commercialized portable device, pH meters can be used for detection of various targets, relying on bioactive enzymes. The nanozymes, as the alternative of the natural enzymes, have rarely been used for pH-metric POCT strategies. Herein, we developed an ultrasensitive pH-metric sandwich-type aptasensor based on the CeO2 nanorods (CeO2 NRs) as phosphatase-mimic and sodium monofluorophosphate (MFP) as catalytic substrate. Under optimal conditions, such strategy yields a detection limit of 1.17 nM with eligible selectivity for detecting thrombin.  相似文献   

17.
A novel electrochemiluminescence (ECL) sandwich-type immunosensor for human immunoglobulin G (hIgG) on a gold nanoparticle modified electrode was developed by using N-(aminobutyl)-N-ethylisoluminol (ABEI) labeling. The primary antibody, goat-anti-human IgG was first immobilized on a gold nanoparticle modified electrode, then the antigen (human IgG) and the ABEI-labeled second antibody was conjugated successively to form a sandwich-type immunocomplex. ECL was carried out with a double-step potential in carbonate buffer solution (CBS) containing 1.5 mM H2O2. The ECL intensity increased linearly with the concentration of hIgG over the range 5.0-100 ng/mL. The limit of detection was 1.68 ng/mL (S/N = 3). The relative standard deviation was 3.79% at 60 ng/mL (n = 9). The present immunosensor is simple and sensitive. It has been successfully applied to the detection of hIgG in human serums.  相似文献   

18.
Addition of some other metals to platinum causes significant increase of its catalytic activity towards ethanol electrochemical oxidation. This may be caused by different adsorption of CO molecules on the surface of the catalyst, and hence different resistance of the M@Pt nanostructures to poisoning by CO. In this work we attempt to verify this hypothesis analyzing vibrational spectra of CO adsorbed on various metal nanoparticles. Au@Pt nanoparticles revealing significantly higher catalytic activity towards ethanol oxidation than one-element Pt nanoparticles have been synthesized. Surface-enhanced infrared absorption (SEIRA) spectra of CO adsorbed on Au@Pt and Pt nanoparticles have been measured. Obtained spectra were very similar, which suggests that the higher catalytic activity of Au@Pt nanoparticles is rather not caused by different adsorption of CO molecules on Pt and Au@Pt nanoparticles. We suppose that better performance of core–shell M@Pt nanoparticles than one elements Pt nanoparticles towards ethanol electrochemical oxidation can be explained as follows: core–shell nanoparticles are probably much more defected than one-element nanoparticles, hence the M@Pt nanoparticles posses greater number of active sites (kinks, adatoms, and so on) for ethanol electrochemical oxidation. Analysis of the catalytic activity and CO adsorption have been also carried out for other nanoparticles including: Sn@Pt, Pb@Pt, Pd, Au@Pd, Sn@Pd and Pb@Pd. Density functional theory (DFT) calculations of CO modes for CO adsorbed on tetrahedral Pt10 or Pd10 clusters with different metal–metal distance have been also performed.  相似文献   

19.
CeO2-deposited mesoporous silica nanoparticles were synthesized as a probe to determine carcinoembryonic antigen (CEA) in serum by inductively coupled plasma-mass spectrometry (ICP-MS). The prepared mesoporous nanoparticles were modified and tagged to the target for sandwich-type immunoassay. Fe3O4 magnetic nanoparticles (MNPs) were also synthesized and immobilized with antibody to extract the target biomarker. The calibration curve of the synthesized CeO2-deposited silica nanoparticles, which was plotted by the signal ratio of 140Ce/57Fe measured by ICP-MS vs. the concentration of CEA, showed excellent linearity and sensitivity owing to the signal amplification and low spectral interference. Under optimal conditions, the sandwich-type analytical method was applied to determine CEA in serum spiked in the range of 0.001–5 ng mL−1 and showed a limit of detection of 0.36 ng mL−1. Since the deposited CeO2 in the mesoporous silica layer can be substituted by other metal compounds, various kinds of metal-deposited nanoparticles can be prepared as probe materials for multiplex detection in bioanalysis.  相似文献   

20.
《Electroanalysis》2018,30(5):852-858
In this study, a novel signal‐amplified strategy for sensitive electrochemical sandwiched immunoassay of carcinoembryonic antigen (CEA) was constructed based on aminofunctionalized graphene oxide (GO‐NH2) supported AgNPs used as catalytic labels of secondary anti‐CEA and β‐galactosidase (β‐Gal), Meanwhile, sulfhydrylation single‐wall carbon nanotubes (SWCNTs‐SH) as substrate materials embellished gold electrode through Au‐SH and connected with gold nanoparticles to form anti‐CEA/AuNPs/SWCNTs‐SH/Au sensing platform through layer‐by‐layer. In the presence of analyte CEA, a sandwich‐type immunoassay format was employed for determination of CEA by using the labeled β‐Gal toward the reduction of p‐aminophenyl galactopyranoside (PAPG) and the redox reaction of AgNPs. Under optimal conditions, the increase in the current was proportional to the concentration of CEA from 0.1 pg/mL to 200 ng/mL. The detection limit (LOD) was 0.036 pg/mL CEA at 3σ. The electrochemical immunoassay displayed an acceptable precision, selectivity, stability. Clinical serum specimens were assayed with the method, and the results were in acceptable agreement with those obtained from the referenced electrochemiluminescent method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号