首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈黎明  丁飞  王欢  张文  陆嘉星 《中国化学》2005,23(4):427-430
The cyclic voltammetric (CV) behaviors of NAD^ were studied with a multi-walled carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode. In 0.05 mol/L tris(hydroxymethyl)aminomethane-HCl (Tris-HCl) buffer solution (pH=6.9), the MWNTs modified electrode showed high electrocatalytic activity toward reduction of NAD^ .The electroreduction of NAD^ was an irreversible diffusion controlled process. The cathodic peak current increased linearly with increasing the concentration of NAD^ . The influences of scan rate, temperature and concentration were also investigated.  相似文献   

2.
Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4°C for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5×10−3 mol L−1 NADH compared with that obtained at a bare glassy carbon electrode.  相似文献   

3.
A novel chemically modified electrode based on the multiwall carbon nanotubes (MWNTs) film-coated carbon fiber ultramicroelectrode (CFUE) has been described for the determination of nitric oxide radical (.NO). The electrochemical behaviors of MWNTs-modified CFUE have been characterized in 0.2 mmol L(-1) K(4)Fe(CN)(6) and 0.1 mol L(-1) KCl solution. The Nafion film was used to avoid some electroactive interferences. The amount of Nafion was optimized, and some possible interferents [such as nitrite (NO(2)(-)), nitrate (NO(3)(-)), ascorbate, dopamine (DA), l-arginine (l-Arg), etc.] were tested and evaluated. The oxidation peak current of .NO increases significantly at the MWNT/Nafion-modified CFUE, in contrast to that at the bare and the Nafion-modified CFUE, and the oxidation peak potential is at 0.78 V (vs. SCE), which can be used for the detection of .NO. The oxidation peak current is linearly with the concentration of .NO from 2x10(-7) to 8.6x10(-5) mol L(-1), and the detection limit is 2x10(-8) mol L(-1). The liver mitochondria in Carassius auratus were isolated and .NO release from mitochondria was monitored by using this ultramicroelectrode system.  相似文献   

4.
The presence of profenofos (PFF) in food has been strictly limited by legislation due to its genotoxic and toxic effects on health. It is therefore very important to establish simple and rapid analytical methods to detect traces of this insecticide. A reusable molecularly imprinted polypyrrole MIP(O-PPy) on a glassy carbon electrode (GCE) has been developed to measure PFF. The PPy was polymerized by cyclic voltammetry (CV) in the presence of template molecules (PFF) in an acidic solution on a GCE. The various experimental parameters such as film thickness, analyte/monomer ratio, and removal/rebinding requirements were examined and optimized. The signal of the redox probe (ferrocyanide/ferrocyanide) was used for the electrochemical detections. All steps of the sensor manufacturing, removal/rebinding of template molecules, and response to different PFF concentrations were tested by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The MIP sensor was able to detect PFF in the linear ranges of 1.0×10−9 to 1.0×10−6 M and 1.0×10−9 to 5.0×10−6 M, with detection limits, a signal-to-noise ratio (S/N) of three was used to estimate LOD, of about 1 nM using DPV and EIS, respectively. The MIP (PPy) GCE provided excellent PFF recognition performance and was successfully used to quantify PFF in sweet pepper samples, yielding recoveries not greater than 108 %.  相似文献   

5.
The direct and selective detection of ascorbate at conventional carbon or metal electrodes is difficult due to its large overpotential and fouling by oxidation products. Electrode modification by electrochemical reduction of diazonium salts of different aryl derivatives is useful for catalytic, analytical and biotechnological applications. A monolayer of o-aminophenol (o-AP) was grafted on a glassy carbon electrode (GCE) via the electrochemical reduction of its in situ prepared diazonium salts in aqueous solution. The o-aminophenol confined surface was characterized by cyclic voltammetry. The grafted film demonstrated an excellent electrocatalytic activity towards the oxidation of ascorbate in phosphate buffer of pH 7.0 shifting the overpotential from +462 to +263 mV versus Ag/AgCl. Cyclic voltammetry and d.c. amperometric measurements were carried out for the quantitative determination of ascorbate and uric acid. The catalytic oxidation peak current was linearly dependent on the ascorbate concentration and a linear calibration curve was obtained using d.c. amperometry in the range of 2-20 μM of ascorbate with a correlation coefficient 0.9998, and limit of detection 0.3 μM. The effect of H2O2 on the electrocatalytic oxidation of ascorbate at o-aminophenol modified GC electrode has been studied, the half-life time and rate constant was estimated as 270 s, and 2.57 × 10−3 s−1, respectively. The catalytically selective electrode was applied to the simultaneous detection of ascorbate and uric acid, and used for their determination in real urine samples. This o-AP/GCE showed high stability with time, and was used as a simple and precise amperometric sensor for the selective determination of ascorbate.  相似文献   

6.
《Electroanalysis》2018,30(1):38-47
The aim of this study is the development of a miniaturized voltammetric method for the determination of an antimycobacterial agent 1‐hydroxy‐N‐(4‐nitrophenyl)naphthalene‐2‐carboxamide (HNN) in a single drop (20 μL) of a solution by cathodic and anodic voltammetry at a glassy carbon electrode. Cyclic voltammetry was used to investigate its redox properties followed by the optimization of differential pulse voltammetric determination in a regular 10 mL volume. The optimal medium for the analytical application of both cathodic and anodic voltammetry was found to be Britton‐Robinson buffer pH 7.0 and dimethyl sulfoxide (9 : 1, v/v). HNN gave one cathodic peak at around −0.6 V and one anodic peak at around +0.2 V vs. Ag|AgCl (3 mol L−1 KCl) reference electrode. Determination of HNN in a 10 mL volume gave the limit of quantification around 10 nmol L−1 by both adsorptive stripping anodic and cathodic voltammetry. Afterwards, miniaturized voltammetric methods in a single drop of solution (20 μL) were investigated. This approach requested some modifications of the cell design and voltammetric procedures. A novel method of removing dissolved oxygen in a single drop had to be developed and tested. Developed miniaturized voltammetric methods gave parameters comparable to the determination of HNN in 10 mL. The applicability of the miniaturized method was verified by the determination of HNN in a drop of a bacterial growth medium.  相似文献   

7.
Single-wall carbon nano-tubes were used to modify the surface of a glassy carbon electrode (GC) and applied in the determination of folic acid with voltammetry. The experiments demonstrated that the presence of a carbon nano-tube film on the electrode greatly increased the reduction peak current of folic acid. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used in a comparative investigation of the electrochemical reduction of folic acid with the film electrode. Effects of pH on the peak current and the peak potential were studied in the pH range of 4.0–8.0 with Britton-Robinson buffer solution. The reduction peak current was found to be linearly related to folic acid concentration over the range of 1 × 10−8 to 1 × 10−4 mol L−1 with a detection limit of 1 × 10−9 mol L−1 after 5 min accumulation. The film electrode provides an efficient way for eliminating interferences from some inorganic and organic species in the solution. The high sensitivity, selectivity and stability of the film electrode demonstrate its practical application from a simple and rapid determination of folic acid in tablets.  相似文献   

8.
《Electroanalysis》2018,30(8):1781-1790
An useful electrochemical sensing approach was developed for epinephrine (EP) detection based on graphene quantum dots (GQDs) and laccase modified glassy carbon electrodes (GC). The miniature GC biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with carbon nanoparticles. This sensing arrangement utilized the catalytic oxidation of EP to epinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of the enzyme – laccase. With the optimized conditions, the analytical performance demonstrated a high degree of sensitivity −2.9 μA mM−1 cm−2, selectivity in a broad linear range (1–120×10−6 M) with detection limit of 83 nM. Moreover, the method was successfully applied for EP determination in labeled pharmacological samples.  相似文献   

9.
采用循环伏安法和差分脉冲伏安法对水杨酸在电活化玻碳电极上的电化学行为进行研究.在pH7.0的PBS溶液中,将玻碳电极用恒电位法在+1.7V电位阳极氧化400 s.在0.2 mol·L- NaOH溶液中,水杨酸在0.602 V处有一良好的氧化峰,其氧化峰电流与扫描速率在0.02~0.2 V·s-1范围内呈良好线性关系,表...  相似文献   

10.
采用循环伏安法和线性扫描伏安法对没食子酸在电活化玻碳电极上的电化学行为进行了研究。玻碳电极在pH7.0的磷酸盐缓冲溶液中,用恒电位法在1.7 V电位阳极氧化400 s。然后在pH3.0的柠檬酸盐缓冲溶液中,没食子酸在0.479 V和0.442 V处有一良好的氧化还原峰,在0.02~0.40 V s-1范围内,其氧化峰电流与扫描速率呈良好线性关系,表明电极过程为受吸附控制的准可逆过程。线性循环伏安法的氧化峰电流与没食子酸浓度1×10-6~1×10-4mol L-1范围内呈良好的线性关系(r=0.980 6),检出限为7.6×10-7mol L-1(S/N=3)。该方法操作简便,重现性较好,并应用此法分析了健民咽喉片剂中的没食子酸的含量。  相似文献   

11.
《Electroanalysis》2018,30(9):1929-1937
An electrochemical sensor based on electropolymerization of β‐cyclodextrin (β‐CD) on a glassy carbon electrode (GCE) was developed for the determination of imidacloprid (IMP). That insecticide is the most commonly used insecticides globally and has been related to the death of bee colonies around the world are imperative. So the development of a simple, cheap and sensitive method for IMP determination is essential. This work aims the modification of a GCE by β‐CD film. The analytical response obtained with GCCE/β‐CD in the presence of the IMP showed an increase in the peak current variation of 947 % in relation to the bare GCE, indicating that the analyte was encapsulated in the β‐CD increasing the detection sensitivity. The followed experimental conditions were optimized: potential range (−1.3 to 0.9 V), presence or absence of dissolved oxygen (presence) and stirring during the electropolymerization (with agitation), number of cycles (5 scans), electrolyte pH (pH=5.0), scan rate (100 mV s−1) and concentration of β‐CD (6 mol L−1). The optimization promoted a peak current variation increase of 57 %, developing a more sensitivity methodology.  相似文献   

12.
制备了氧化锆修饰的玻碳电极,采用示差脉冲伏安法和循环伏安法探究了槲皮素在该电极上的电化学行为。结果表明,制备的修饰电极在pH=7.00的磷酸盐缓冲溶液(PBS)中对槲皮素的氧化还原具有明显的电催化作用。采用槲皮素的氧化峰电流作为分析信号。在浓度为2.5×10-8~5×10-5 mol/L的范围内,氧化峰电流和浓度成良好的线性关系,线性方程为ip(μA)=0.0825c-9.861 84,检出限为5.35×10-9 mol/L。  相似文献   

13.
Here, an electrochemical detection approach (differential pulse voltammetry) was employed to develop a 2-nitrophenol (2-NP) sensor probe using a glassy carbon electrode (GCE) coated by wet-chemically synthesized nanorods (NRs) of BaO. The prepared BaO NRs were characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) analysis. The peak currents by differential pulse voltammetric (DPV) analysis of 2-NP are plotted against the concentration to obtain the calibration curve of the 2-NP detection. It was found to be linear from 1.5 to 9.0 μM, defined as the dynamic range (LDR) for 2-NP detection in phosphate buffer solution. The sensor sensitivity was calculated from the slope of LDR by considering the active surface area of NRs coated on GCE (0.0316 cm2) and found as 17.6 μAμM−1 cm−2. The limit of detection (LOD) was calculated as 0.50±0.025 μM from the signal/noise (S/N) ratio of 3. Moreover, the sensor analytical parameters such as reproducibility, long-term performing ability (stability), response time and validity in real environmental samples were found acceptable and to give satisfactory results. The development of a nanomaterial-based electrochemical chemical sensor might be an effective approach to sensor technology to detect carcinogenic and hazardous toxins for environmental safety and healthcare fields in a broad scale.  相似文献   

14.
制备了金纳米粒子/碳纳米管修饰玻碳电极(AuNPs-CNTs/GCE),采用循环伏安法和线性扫描伏安法研究了4-壬基酚在修饰电极上的电化学行为,并建立了一种灵敏简便地检测4-壬基酚的电化学方法。优化了pH值、扫描速率、富集时间等测定参数,并计算出pH值与氧化峰电压、扫描速率与氧化峰电流之间的数量关系。在pH 10.0的BR缓冲溶液中,4-壬基酚在AuNPs-CNTs/GCE上出现灵敏的氧化峰,氧化电位为0.51 V。与裸玻碳电极(GCE)和单一碳纳米管修饰电极(CNTs/GCE)相比,AuNPs-CNTs/GCE明显提高了4-壬基酚的氧化电流。在优化实验条件下,4-壬基酚的浓度分别在0.05~4μmol/L和6~14μmol/L范围内与氧化峰电流呈良好的线性关系,检出限为0.023μmol/L,对于实际样品测定的回收率为95%~104%。该修饰电极具有良好的重现性和稳定性,可用于环境样品中4-壬基酚的直接检测。  相似文献   

15.
《Electroanalysis》2005,17(11):941-945
A glassy carbon electrode (GCE) was modified with electropolymerized films of cresol red in pH 5.6 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode shows an excellent electrocatalytic effect on the oxidation of norepinephrine (NE). The peak current increases linearly with the concentration of NE in the range of 3×10?6–3×10?5 M by the differential pulse voltammetry. The detection limit was 2×10?7 M. The modified electrode can also separate the electrochemical responses of norepinephrine and ascorbic acid (AA). The separation between the anodic peak potentials of NE and AA was 190 mV by the cyclic voltammetry. And the responses to NE and AA at the modified electrode were relatively independent.  相似文献   

16.
《Electroanalysis》2018,30(2):288-295
Methotrexate (MTX) was used as an anti‐cancer drug, but its excessive use can cause serious side effects, it was necessary to monitor MTX in vivo. In this report, DNA was immobilized on a glassy carbon electrode (GCE) modified with graphene oxide (GO) to develop an electrochemical sensor for sensitive determination of MTX for the first time. The adsorptive voltammetric behaviors of MTX on DNA sensor were investigated using differential pulse voltammetry (DPV). The peak current response of guanine in DNA was used as a determination signal of MTX in acetate buffer solution pH 4.6. Voltammetric investigations revealed that the proposed method could determine MTX in the concentration range from 5.5×10−8 to 2.2×10−6 mol L−1 with a lower detection limit of 7.6×109 mol L−1 (S/N=3). The method was applied to detect MTX in human blood serum and diluted urine samples with excellent recoveries of 97.4–102.5 %. Compared with the previous studies, the DNA/GO/GCE electrode constructed by us based on the change rate of guanine current (R%) in DNA, proportionally reflecting the MTX concentration, is simple and sensitive .  相似文献   

17.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

18.
In this study, a simple and sensitive square wave voltammetric procedure has been developed for the determination of acemetacin (ACM) at graphite flake paste electrode (GFPE) and glassy carbon electrode (GCE). Under optimized conditions, the dependence of ACM peak current on its concentration showed wide linear range: 0.03–1.0 μmol L−1 and 0.7–15.0 μmol L−1 at GFPE and GCE, respectively. The developed method was successfully applied for the determination of ACM in pharmaceuticals and spiked urine with satisfying recoveries. The electrochemical oxidation of ACM is an irreversible process controlled by mixed nature of the mass transfer process.  相似文献   

19.
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0×10−3 mol l−1 NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol l−1 phosphate buffer (pH 7.0) containing 0.1 mol l−1 NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0×10−3 mol l−1 NADH was 6.7×10–6 cm2 s−1.  相似文献   

20.
《Electroanalysis》2017,29(10):2385-2394
In this present scenario, for the first time, we propose a facile and simple wet chemical approach for the fabrication of two‐dimensional (2D) cerium tungstate (CeW2O9;CeW) nanosheets and evaluated as an electrochemical sensor for the detection of nitrite ions. The successful formation of CeW2O9 nanosheets was confirmed by various physicochemical techniques such as X‐ray diffraction, Fourier transform infrared spectroscopy, Raman, Scanning electron microscope, Transmission electron microscope and Energy dispersive X‐ray studies. The electrochemical properties of the CeW nanosheets were studied by using cyclic voltammograms (CV) and chronoamperometric techniques. As an electrochemical sensor, the CeW nanosheets modified glassy carbon electrode (GCE) showed superior electrocatalytic activity in the oxidation of nitrite in terms of higher anodic peak current and lower oxidation potential when compared with unmodified GCE. CeW nanosheets based electrochemical sensor has been fabricated which detect nitrite in wide linear response range, good sensitivity and very low detection limit of 0.02–986 μM, 2.85 μA μM−1 cm−2 and 8 nM, respectively. Moreover, the CeW nanosheets modified GCE exhibited excellent selectivity even in the presence of common metal ions and biologically co‐interfering compounds. For the practical viability of the prepared amperometric sensor has been utilized in various water samples such as tap, lake and drinking water and the obtained recoveries are appreciable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号