首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A rapid and user‐friendly approach is here presented for assembling smart and versatile platforms for simultaneous electrochemical and spectrophotometric measurements. They consist of an optically transparent pencil‐drawn electrochemical cell, including reference, counter and working carbon electrodes, assembled on flexible PVC supports, exploiting a commercial desktop digitally controlled plotter/cutter. This cell is installed on a U shaped 3D printed polylactic frame where a second transparent window consisting of an unmodified PVC layer was also applied. After optimization of the fabrication procedure, the electrochemical and optical characterization of the assembled miniaturized platforms was performed by using aqueous electrolytes and potassium hexacyanoferrate(II) as redox probe. These devices were then tested by a proof‐of‐concept direct and simultaneous electrochemical and spectrophotometric quantification of a commonly used food dye (Brilliant Blue, E‐133) in soft‐drinks and candies. Spectrophotometric and electrochemical determinations can be performed at the same time, providing simultaneous information and enabling a concomitant comparison and validation of the results obtained.  相似文献   

2.
Additive manufacturing (3D-printing) has revolutionized many areas of the manufacturing. Three-dimensional printing offers enormous potential to biomedical devices, including electroanalytical systems. The motivation for 3D printing is rapid prototyping and decentralized customizable fabrication of bioanalytical systems in the diverse and remote areas of the globe. We overview the recent trends and discuss the fabrication and applications of 3D printed polymer/carbon and metal electrodes and whole electrochemical systems for biomedical applications and DNA detection. We show that sky is the limit and envision whole analytical systems, including electronics, to be 3D printed in the future for diagnostics in the remote areas of the globe.  相似文献   

3.
In our previous paper (Analyst, 2014 , 139, 5339) we introduced the concept of the back‐to‐back electrochemical design where the commonly overlooked back of screen‐printed electrodes are utilised to provide electroanalytical enhancements in screen‐printed electroanalytical sensors. In this configuration the overall sensor comprises of a flexible polyester substrate which has a total of two working, counter and reference electrodes present on the sensor, with a set of electrodes on each side of the substrate. The sensors are designed to allow for a commonly shared electrical connection to the potentiostat and do not require any specialised connections. In this paper we demonstrate proof‐of‐concept extending the electroanalytical utility of the back‐to‐back screen‐printed electrode sensors to bulk modified single‐walled carbon‐nanotubes and electrocatalytic cobalt phthalocyanine microband electrodes. The electroanalytical applications of these novel electrode configuration are exemplified towards the sensing of dopamine, capsaicin and hydrazine. This paper demonstrates the versatility of the back‐to‐back configuration where different surface modifications can be readily employed giving rise to enhancements in sensor performance.  相似文献   

4.
《Electroanalysis》2018,30(2):345-352
We reported here three simple, low cost and easy to accomplish strategies for the fabrication of microelectrodes and other conductive patterns using ordinary office laser‐printers. In this work, toner patterns were directly printed onto the flexible substrate, acting as a mask to create the intended conductive design. To highlight the versatility of such technology, toner‐printed patterns were employed in two diverse ways: one in which the patterned toner had the exact design of the electrode and other employing a reverse toner‐printed pattern. The first one was used for the adaptation of the well‐known printed circuit board (PCB) fabrication technique, but using direct toner printing (DTP) in an already conductive flexible substrate. The second was employed for the two remaining strategies: one based on the deposition of conductive film, followed by lift‐off process; and another based on drop‐casting of a conductive ink into the formed toner cavities, followed by thermal cure. As proof‐of‐concept, all three DTP strategies were used for the fabrication of miniaturized gold electrodes in polyimide substrate, and electrochemical performance of each obtained electrode was evaluated by cyclic voltammetry. Insights about DTP technology, alignment issues, advantages, limitations and resolution of each presented approach were provided. Finally, direct toner printing showed to be a simple, affordable and quite promising technology for the fabrication of low cost point‐of‐care electrochemical devices using flexible platforms.  相似文献   

5.
Gold nanowires were synthesized within polycarbonate membranes according to an electroless deposition method, obtaining nanoelectrode ensembles (NEEs) with special electrochemical features. NEEs were coupled with home-produced carbon graphite screen printed electrodes and the electrochemical properties of the original nanoelectrode ensemble on screen printed substrate (NEE/SPS) assembly has been tested for sensors application. Glucose oxidase has been used as model enzyme in order to verify the feasibility of disposable gold NEE/SPS biosensors. Finally, different immobilisation and electrochemical deposition techniques based on either self assembled monolayers of cysteamine (CYS) or amino-propyl-triethoxysilane (APTES) and conductive polyaniline (PANI) molecular wires were used. Spatial patterning of the enzyme on the polycarbonate surface and of PANI wires on gold nanoelectrodes was obtained. Possible direct electron transfer between the enzyme and the PANI modified gold nanoelectrodes has been evaluated.  相似文献   

6.
The pursuit of ultraflexible sensors has arisen from the recent implementation of electrochemical sensors into wearable clothing where extensive mechanical stress upon the sensing platform is likely to occur. Such scenarios have witnessed screen‐printed electrodes being incorporated into the waistband of undergarments for the determination of key analytes while others have reported incorporation into a neoprene wetsuit. In these conformations, the substrates which the sensors are printed upon need to be ultraflexible and capable of withstanding extensive individual mechanical stress. Therefore the composition, thickness and its combination of screen‐printed ink require extensive consideration. A common short‐coming within the field of screen‐printed derived sensors is the lack of consideration towards the substrate material employed, and is rather in favour of the development of new electrode geometries and screen‐printing inks. In this paper we explore the screen‐printing of graphite based electroanalytical sensing platforms onto graphic paper commonly used in house‐hold printers, and for the first time both tracing paper and ultraflexible polyester‐based substrates are used. These sensors are electrochemically benchmarked with the redox probes hexaammine‐ruthenium(III) chloride and potassium ferrocyanide(II). The effect of mechanical contortion upon two types of electrode substrates is also performed where it was found that these ultraflexible based polyester‐based electrodes are superior to the previously reported ultraflexible paper electrodes since they can withstand extensive mechanical contortion, yet they still give rise to useful electrochemical performances. Most importantly the ultraflexible polyester electrodes do not suffer from capillary action as observed in the case of paper‐based sensors causing the solution to wick‐up the electrode towards the electrical connections resulting in electrical shorting, therefore compromising the electrochemical measurement; as such this new substrate can be used as a replacement for paper‐based substrates and yet still be resilient to extreme mechanical contortion. A new configuration is also explored using these electrode substrate supports where the working carbon electrode contains the electrocatalyst, cobalt(II) phthalocyanine (CoPC), and is benchmarked towards the electroanalytical sensing of the model analytes citric acid and hydrazine which demonstrate excellent sensing capabilities in comparison to previously reported screen‐printed electrodes.  相似文献   

7.
《Electroanalysis》2017,29(11):2444-2453
Heavy metals, being one of the most toxic and hazardous pollutants in natural water, are of great public health concern. Much effort is still being devoted to the optimization of the electroanalytical methods and devices, particularly for the development of novel electrode materials in order to enhance selectivity and sensitivity for the analysis of heavy metals. The ability of 3D‐printing to fabricate objects with unique structures and functions enables infinite possibilities for the creation of custom‐made electrochemical devices. Here, stainless steel 3D‐printed electrodes (3D‐steel) have been tested for individual and simultaneous square wave anodic stripping analysis of Pb and Cd in aqueous solution. Electrodeposition methods have also been employed to modify the steel electrode surface by coating with a thin gold film (3D−Au) or a bismuth film (3D−Bi) to enhance the analytical performance. All 3D‐printed electrodes (3D‐steel, 3D−Au and 3D−Bi) have been tested against a conventionally employed glassy carbon electrode (GC) for comparison. The surface modified electrodes (3D−Au and 3D−Bi) outperformed the GC electrode demonstrating higher sensitivity over the studied concentration ranges of 50–300 and 50–500 ppb for Pb and Cd, respectively. Owing to the bismuth property of binary alloys formation with heavy metals, 3D−Bi electrode displayed well‐defined, reproducible signals with relatively low detection limits of 3.53 and 9.35 ppb for Pb and Cd, respectively. The voltammetric behaviour of 3D−Bi electrode in simultaneous detection of Pb and Cd, as well as in individual detection of Pb in tap water was also monitored. Overall, 3D‐printed electrodes exhibited promising qualities for further investigation on a more customizable electrode design.  相似文献   

8.
Su L  Mao L 《Talanta》2006,70(1):68-74
This paper describes novel electrochemical properties of gold nanoparticles/alkanedithiol conductive films and their electroanalytical applications for voltammetric determination of trace amount of one kind of environmental pollutants, catechol. The conductive films are prepared by closely packing 12-nm diameter gold nanoparticles (Au-NPs) onto Au electrodes modified with the self-assembled monolayers (SAMs) of alkanedithiols (i.e., HS(CH2)nSH, n = 3, 6, 9). The assembly of the Au-NPs onto the SAM-modified electrodes essentially restores the heterogeneous electron transfer between Au substrate and redox species in solution phase that is almost totally blocked by the SAMs and, as a result, the prepared Au-NP/SAM-modified electrodes possess a good electrode reactivity without a remarkable barrier toward the heterogeneous electron transfer. Moreover, the prepared Au-NP/SAM-modified electrodes are found to exhibit a largely reduced interfacial capacitance, compared with bare Au electrode. These electrochemical properties of the Au-NP/SAM-modified electrodes essentially make them very useful for electroanalytical applications, which is illustrated by voltammetric determination of trace amount detection of environmental pollutant, catechol.  相似文献   

9.
Carbon nanofibres (CNFs) and graphite flake microparticles were added to thermoplastic polystyrene polymer with the aim of making new conductive blends suitable for 3D‐printing. Various polymer/carbon blends were evaluated for suitability as printable, electroactive material. An electrically conducting polystyrene composite was developed and used with commercially available polystyrene (HIPS) to manufacture electrodes suitable for electrochemical experiments. Electrodes were produced and evaluated for cyclic voltammetry of aqueous 1,1’‐ferrocenedimethanol and differential pulse voltammetry detection of aqueous Pb2+ via anodic stripping. A polystyrene/CNF/graphite (80/10/10 wt%) composite provides good conductivity and a stable electrochemical interface with well‐defined active geometric surface area. The printed electrodes form a stable interface to the polystyrene shell, give good signal to background voltammetric responses, and are reusable after polishing.  相似文献   

10.
A facile and effective electrochemical activation method of screen printed carbon electrodes (SPCEs) has been performed using ozone gas. Activated SPCEs showed relevant improvements in the electrochemical properties such as an impedance reduction and better electroanalytical outcomes. Such improved properties were attributed to the increase of the electroactive surface area and the functionalization of the electrode surface with carbon‐oxygen groups onto the carbonaceous ink surface. The optimized activation method consisted in the performance of a voltammetric cycle between ?2 and 2 V at 10 mV s?1 in 0.1 M NaOH solution with constant ozone gas bubbling. This activation procedure takes 12 min, which allows its use routinely prior to the electrode modifications and electroanalytical measurements. The resulting activated SPCEs exhibited superior sensitivities towards hydrogen peroxide, acetaminophen, hydroquinone and dopamine. This methodology might be considered as a strategy to attain SPCEs with improved electroanalytical properties for multiple applications.  相似文献   

11.
《Electroanalysis》2018,30(9):1897-1901
This work describes a low‐cost 3D printed apparatus developed for powder electrical conductivity measurement with electrodes fitted in either a two‐probe or four probe van der Pauw configurations. Electrical conductivity was then measured as a function of density by compressing the powders in an Instron mechanical test machine. Highly conductive carbon black, lower conductive Fe3O4 and titania carbon nanotube composites were further tested under both methodologies to assess their reliability. Small powder masses are required for each measurement and our data matched well with literature values. It appeared that 3D printed polymer dies could be used to measure powder conductivity, though loss of material on the die walls was a source of error especially for small powder volumes.  相似文献   

12.
《Electroanalysis》2017,29(5):1316-1323
Total antioxidant capacity is an important parameter for the evaluation of the oxidative status in different kinds of biological samples such as plant extracts, or in food industry. We report a fast, easy, portable, cost‐effective electroanalytical method to measure total antioxidant capacity, based on the reaction of natural antioxidants with electrogenerated iodine using disposable platinum screen‐printed electrodes. This reaction can be measured by the increment of the electrochemical current signal of iodide oxidation to iodine during a voltammetric cycle. Iodine reacts with reducing compounds such as glutathione, ascorbate, gallic acid and NADH without interference of the corresponding oxidized counter‐parts. The addition of ascorbate oxidase also allows the concentration of ascorbate to be determined. The method was tested with real samples of plant extracts and the results correlated well with those obtained with a standard spectrophotometric method.  相似文献   

13.
The growing demand for low cost and easy to use analytical devices requires the development of reliable and rapid deposition strategies suitable for changing easily planned designs and applicable to a wide range of materials for assembling conductive tracks and sensitive elements. Further important challenges to be pursued are the possibility of using readily available instrumentation and reducing power consumption and hazardous chemical waste. This review provides an overview of the use of portable day‐to‐day writing tools, such as pencils and pens, for the rapid and on‐demand deposition of conductive patterns on different substrates, with particular emphasis on the assembly of “Do It Yourself” sensors. Moreover, layer‐by‐layer deposition of simple or even complex three dimensional (3D) circuits, resorting to pressure driven extrusion of conductive filaments is considered. Future perspectives and potentiality of these emerging technologies for assembling sensors are also explored.  相似文献   

14.
In this work, three-dimensional (3D) printing system based on fused deposition modeling (FDM) is used for the fabrication of conductive polymer nanocomposites. This technology consists in the additive multilayer deposition of polymeric nanocomposite based on poly(lactic acid) (PLA) and graphene by means of a in house made low-cost commercial bench-top 3D printer. Further, 3D printed PLA/graphene nanocomposites containing 10 wt% graphene in PLA matrix were characterized for their mechanical, electrical and electromagnetic induction shielding properties of the nanocomposite. Furthermore X-ray computed micro-tomography analyses showed that printed samples have good dimensional accuracy and are significantly closer to the predefined design and the results of scanning electron microscopy (SEM) printed samples showed a uniform dispersion of graphene in PLA matrix The proposed material has uniquely advantageous when implemented in 3D printed structures, because incorporation of multifunctional graphene has been shown to substantially improve the properties of the resulting nanocomposite.  相似文献   

15.
A highly sensitive amperometric Prussian blue-based hydrogen peroxide sensor was developed using 3D pyrolytic carbon microelectrodes. A 3D printed multielectrode electrochemical cell enabled simultaneous highly reproducible Prussian blue modification on multiple carbon electrodes. The effect of oxygen plasma pre-treatment and deposition time on Prussian blue electrodeposition was studied. The amperometric response of 2D and 3D sensors to the addition of hydrogen peroxide in μM and sub-μM concentrations in phosphate buffer was investigated. A high sensitivity comparable to flow injection systems and a detection limit of 0.16 μM was demonstrated with 3D pyrolytic carbon microelectrodes at stirred batch condition  相似文献   

16.
Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol–gel electrodes are also described. The development of sonogel–carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.  相似文献   

17.
A simple but sensitive technique has been demonstrated towards the electroanalytical quantification of the strength of garlic. This technique can also be used to quantify dialkyldisulfides. The cyclic voltammetry of bromide was found to be a sensitive electrochemical probe, electrogenerated bromine reacting with dialkyldisulfides to catalytically regenerate bromide, resulting in a significant increase in peak current. A linear response of current vs. concentration was observed between 0.1 and 15 mM dipropyldisulfide at edge plane pyrolytic graphite (EPPG) electrodes; a smaller range up to ca. 5 mM was available at screen printed carbon electrodes (SPCEs), with a detection limit (from 3σ) of 0.067 mM. The response of diallyldisulfide was found to be essentially identical. Shaking garlic puree in acetonitrile for 5 minutes, followed by dilution with water then recording the voltammetry at the cheap, disposable SPCE gave a linear trend in current with respect to the quantity of garlic present, corresponding to the diallyldisulfide extracted. This has potential applications in monitoring the garlic content of medicinal supplements, batch-to-batch variation and the stability of garlic during storage.  相似文献   

18.
We report the fabrication of disposable and flexible screen printed microelectrodes which are characterised with microscopy and cyclic voltammetry. These new type of screen printed electrochemical platforms consist of micro-sized graphite typically with radii of 60 to 100 microns are defined by an inert dielectric. The advantage of this type of electrochemical sensing platform is that each microelectrode is disposable and cost effective and thus does not require extensive cleaning or electrode pre-treatment between measurements. Prior to measurements the screen printed microelectrode needs only to be calibrated with a suitable redox probe, as is typically the case with microelectrodes. We show proof of concept that the screen printed microelectrodes are advantageous for electro-analytical measurements with the example of determination of lead via cathodic stripping voltammetry. The use of graphite screen printed microelectrodes allows comparable detection limits to that obtained in the literature at insonated boron doped diamond electrodes, without the need for power ultrasound – which otherwise limits the widespread applicability and ease of measurement.  相似文献   

19.
In this work an electrochemical immunoassay, based on a direct competitive assay, was developed using magnetic beads as solid phase and carbon screen‐printed arrays as transducers for the detection of sulfonamides in food matrices such as honey. Magnetic beads coated with protein A were modified by immobilisation of specific antibodies and then the competition between the target analyte and the corresponding analyte‐labelled with an enzyme was carried out; after the immunosensing step, beads were captured by a magnet onto the working surfaces of a screen‐printed eight‐electrodes array for a multiple electrochemical detection. Screen‐printed eight‐electrodes arrays were chosen as transducers due to the possibility to repeat multiple analysis and to test different samples simultaneously. Alkaline Phosphatase (AP) was used as enzyme label and Differential Pulse Voltammetry (DPV) as fast electrochemical technique. Calibration curves demonstrate that the developed electrochemical immunoassay was able to detect this class of drugs in standard solutions at low concentrations (ng/mL levels). The short incubation times (25 min) and the fast electrochemical measurement (10 sec) make of these systems a possible alternative to classic ELISA tests.  相似文献   

20.
We demonstrate that the electron transfer properties of disposable screen printed electrodes can be readily tailored via the introduction of a polymeric formulation into the ink used to fabricate these electrochemical platforms. This approach allows the role of the binder on the underpinning electrochemical properties to be explored and allows the electrochemical reactivity of the screen printed electrodes to be tailored from that of edge plane to basal plane of highly ordered pyrolytic graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号