首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We investigated the effect of incorporating extra amino acids (AA) at the n-terminus of the thiolated and methylene blue-modified peptide probe on both specificity and selectivity of an electrochemical peptide-based (E-PB) HIV sensor. The addition of a flexible (SG)3 hexapeptide is, in particular, useful in improving sensor selectivity, whereas the addition of a highly hydrophilic (EK)3 hexapeptide has shown to be effective in enhancing sensor specificity. Overall, both E-PB sensors fabricated using peptide probes with the added AA (SG-EAA and EK-EAA) showed better specificity and selectivity, especially when compared to the sensor fabricated using a peptide probe without the extra AA (EAA). For example, the selectivity factor recorded in the 50% saliva was ∼2.5 for the EAA sensor, whereas the selectivity factor was 7.8 for both the SG-EAA and EK-EAA sensors. Other sensor properties such as the limit of detection and dynamic range were minimally affected by the addition of the six AA sequence. The limit of detection was 0.5 nM for the EAA sensor and 1 nM for both SG-EAA and EK-EAA sensors. The saturation target concentration was ∼200 nM for all three sensors. Unlike previously reported E-PB HIV sensors, the peptide probe functions as both the recognition element and antifouling passivating agent; this modification eliminates the need to include an additional antifouling diluent, which simplifies the sensor design and fabrication protocol.  相似文献   

2.
The properties of solvent polymeric membrane sensors based on 5,10,15,20-tetraphenylporphyrin (TPP) and phthalocyanine (PHC) have been investigated. The sensitivity and selectivity of sensors towards wide range of mono- and di-valent cations have been measured. The selectivity towards the transition metal ions for TPP-based sensor does not correspond to the cation lipophilicity sequence. The dependence of response on pH was studied. The cross-sensitivity parameters, including average response slope, signal-to-noise ratio and “non-selectivity” factor for all sensors were calculated and compared. The influence of plasticizer and ionic additive on the response of sensors was characterized using principal component analysis (PCA).  相似文献   

3.
Ion-selective electrode (ISE) was designed by dispersing the dysprosium(III) IIP particles in 2-nitrophenyloctyl ether plasticizer and then embedded in polyvinyl chloride matrix. The ISE shows a Nernstian response for dysprosium(III) over a wide concentration range (8.0 × 10−6 to 1.0 × 10−1 M) with a slope of 21.7 mV per decade. The limit of detection was 2 × 10−6 M. This sensor has a very fast response time (∼10 s) and offers high selectivity compared to conventional chemical sensors towards dysprosium(III) with respect to several alkali, alkaline earth and transition metal ions as the selectivity is 10-100-fold better. The sensor was used for determination of dysprosium(III) ions by potentiometric (EDTA) titration and has been successfully demonstrated for the determination of fluoride in mouth wash solution.  相似文献   

4.
Despite the tremendous variety of methods suitable for sensing applications, we face the fact that chemical sensors displaying sensitivity, selectivity and reversibility are still scarce and are mostly confined to low-molecular-weight species. Obviously, it is not the lack of optical (or other) transduction methods that limit the performance of present day sensor desingns, but rather the insufficient selectivity of the recognition process, particularly in the field of sensors for organic and bioorganic species. The use of enzymes, ion carriers and natural or synthetic receptor/carriers which can under go specific interactions with the species to be recognized (such as through hydrogen bonding or charge-transfer interaction) can result in specific recognition and, consequently, sensing. Examples for optical sensing schemes for clinically or biologically important species including enzyme substrates, metabolites, drugs, alkali and ammonium ions and other will be given. In enzyme-based sensors various options exist: depending on which species is immobilized, assays for substrates (such as glucose, ethanol, lactate or creatine), enzymes (such as esterases) or inhibitors (such as organophosphates) can be designed. In addition, the intrinsic optical properties of certain enzymes, coenzymes or metabolites can be utilized for sensing purposes, a fact that presents an interesting alternative to enzyme sensors with chemical transducers.Notwithstanding the selectivity of biocatalytic sensors, their stability and sensitivity is moderate. Bioorganic synthetic molecules which can recognize and reversibly bind other species offer an attractive alternative, particularly in terms of stability. However, quite a different situation is found in such cases because receptors, in contrast to enzymes, do not “digest” their substrates. Hence, while the steady-state response in enzyme-based sensors is a result of kinetic equilibration, substrate binding in non-metabolizing receptors results in thermodynamic equilibration. However, most existing receptors (except antibodies) lack the unique specificity of enzymes. On the other side, new bioorganic molecules and stable receptor/carriers along with polymer materials of proper permeation selectivity can help to overcome current limitations of protein-based systems. Neutral ion carriers, which may be considered as ion receptors, are a useful example of sometimes highly specific recognition/carrier molecules with excellent stability. Unfortunately, no receptor /carrier molecules of similar specificity do exist yet for most other organic and clinical parameters of interest. There is an obvious need for new and stable molecules suitable for specific recognition of low-molecular weight organic species.We will report on the use of such new receptor/carrier molecules, the respective sensor materials, and how the process of recognition can be coupled to optical transduction. Such receptors/carriers also allow other kinds of discriminations: if, for instance, it is enantio-selective (i.e. preferably binds one species out of a pair of optical isomers), a fairly specific recognition of enantiomers of biogenic amines (such as some drugs and biogenic amines) will become possible. Specific examples will also be given of new types of sensors based on recognition by charge-transfer interaction, through-space interaction and hydrogen bonding, with fair specificity for thiamine, penicilline, nitrate, salicylate and cholic acids. Finally, current problems and the significant challenges for sensors research in the 1990s will be discussed.  相似文献   

5.
近年来,光电化学传感器的研究已经成为人们关注的热点。光敏材料作为光电化学传感器的关键部分,其性能对传感器的灵敏度、选择性和稳定性等特征起着决定性的作用。该文简要介绍了光电化学传感器的原理和光电材料的分类,阐述了在光电化学传感器中常见过渡金属氧化物及其复合物的光电材料的制备方法与应用,对光电化学传感器及光电化学材料的发展前景进行了展望(引用文献67篇)。  相似文献   

6.
In this paper, the selectivity and sensitivity of cyclodextrin (CD) modified infrared (IR) chemical sensor in detection of aromatic acids in aqueous solutions were reported. To eliminate the interference from water, the technique of attenuated total reflection was employed. By surface treated with CD molecules on the internal reflection elements, the sensors were selective in sensing of aromatic acids compared to aromatic compounds with other functional groups. To facilitate the use of this method for the quantitative analyses of aromatic acids in aqueous solutions, analytical functions were also developed in this work and a linear relationship between analytical responses and concentrations of analytes can be obtained. To optimize the analytical conditions, the factors that influence the IR spectroscopic signals were examined. These factors included response time, CD loadings of the sensors, pH effect on response, regeneration efficiency and stability of sensors. Under the optimal conditions, the detection limits for aromatic acids at a detection time of 2 min can be <100 μg/L. Meanwhile, the dynamic linear range for detection was only ca. two orders of magnitude if direct IR signals were used. Using the analytical function developed in this work, the linearity can be extended up to a concentration of 100 mg/L.  相似文献   

7.
Two tissue electrodes are described in this paper. It is shown that a portion of intact tissue from apple or cactus can be coupled with potentiometric ammonia gas sensing electrode to prepare sensors for some amino acids with good response properties. Their optimum operating conditions and properties with respect to buffer sort, pH of the bulk solution, selectivity, linearity, stability, sensitivity and response time are studied and discussed. At the same time, the dynamic parameters, such as Km and Km, of L-glutamine deaminasc and L-as-paragine deamlnase have been obtained by means of these tissue electrodes.  相似文献   

8.
Optical dihydrogen phosphate-selective sensors that function on the basis of bulk optode principles and are based on two different uranyl salophene ionophores are reported here for the first time. The influence of the optode composition and measuring conditions such as sample pH on the optode response are characterized, along with sensor selectivity and long-term stability. Three plasticizers of different polarity are considered for optode fabrication: bis(2-ethylhexyl)sebacate (DOS), dodecyl 2-nitrophenyl ether (o-NPDDE), o-nitrophenyloctylether (o-NPOE). The compounds 9-(diethylamino)-5-(octadecanoylimino)-5H-benzo[a]phenoxazine (ETH 5294, chromoionophore I) and 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (ETH 5350, chromoionophore III) are used as H+-selective fluoroionophores that also act as reference ionophores. The resulting optode-based sensors are compared with their ion-selective electrode (ISE) counterparts, and it is revealed that optodes are better suited for operation at physiological pH. The best optode performance was found for the two component optode sensors doped with ETH 5350 and phosphate ionophore(I). The linear range of these sensor was log a = −6.0 to −2.6. Dihydrogen phosphate-selective optode sensors of optimized composition are fabricated in microsphere format and preliminary measurements in diluted sheep blood samples are presented.  相似文献   

9.
Fai VL  Lee YD  Lee K  Lee KS  Ham DJ  Ju BK 《Talanta》2011,85(1):463-468
Chemical detection is still a continuous challenge when it comes to designing single-walled carbon nanotube (SWCNT) sensors with high selectivity, especially in complex chemical environments. A perfect example of such an environment would be in thermally oxidized soybean oil. At elevated temperatures, oil oxidizes through a series of chemical reactions that results in the formation of monoacylglycerols, diacylglycerols, oxidized triacylglycerols, dimers, trimers, polymers, free fatty acids, ketones, aldehydes, alcohols, esters, and other minor products. In order to detect the rancidity of oxidized soybean oil, carbon nanotube chemiresistor sensors have been coated with polyethylenimine (PEI) to enhance the sensitivity and selectivity. PEI functionalized SWCNTs are known to have a high selectivity towards strong electron withdrawing molecules. The sensors were very responsive to different oil oxidation levels and furthermore, displayed a rapid recovery of more than 90% in ambient air without the need of heating or UV exposure.  相似文献   

10.
Carbon?Cdeuterium labeled amino acids can serve as sensitive probes for biophysical characterization. Although multiple research groups have used infrared spectroscopy in conjunction with alkyl backbone or side-chain deuterated amino acids for the biophysical characterization of conformational and/or environmental changes, it was not entirely clear to the authors that perdeuterated aryl rings would demonstrate a similar sensitivity toward conformational or environmental changes. In an effort to evaluate the sensitivity of aryl carbon?Cdeuterium (C?CD) IR frequencies, a B3LYP investigation of the sensitivity of aryl C?CD frequencies toward conformational and environmental changes was conducted for phenylalanine (Phe) and tryptophan (Trp). To compensate for the low molar absorptivity of C?CD frequencies, perdeuterated aryl rings were investigated, which are commercially available and can be readily compared to experimental data. B3LYP results suggest that aryl-deuterated Phe and Trp will exhibit moderate sensitivities toward conformational and environmental changes with frequency shifts upward of 13 and 26?cm?1 for Phe and Trp, respectively. B3LYP predicts that conformational sensitivity arises from dipole changes and not orbital alignment changes. In an effort to mimic what might be observed experimentally, simulated IR spectra were created and show absorption band changes with conformational and environmental changes, which indicate that IR characterization of perdeuterated aryl rings in amino acids could serve as a biophysical tool.  相似文献   

11.
This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Such peptides often perform better than antibodies, but they are difficult to select when the target is a small molecule because of the need to immobilize it with considerable modifications of its structure. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors: pathogenic bacteria have been detected with antimicrobial and cell-penetrating peptides, but key challenges such as detection of bacteria in real samples, improved sensitivity, and improved selectivity have to be faced. Peptide substrates have been conjugated to fluorescent quantum dots to obtain disposable sensors for protease activity with high sensitivity. Ferrocene–peptide conjugates have been used for electrochemical sensing of protease activity.  相似文献   

12.
《中国化学快报》2019,30(11):1984-1988
Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid(PA) with good sensitivity and selectivity.The sensitivity of the sensor was attributed to the specific electrostatic association effect of the cationic pyrenoviologens to the picrate anions,which also gave the sensor special selectivity among other compounds with similar structure.The electron transfer between them was attributed to the fluorescence response.Fluorescence lifetime measurements revealed that the quenching is static in nature.The novel and efficient pyrenoviologen derivatives-based sensors offered a strategy to fabricate real-life PA sensor.  相似文献   

13.
This article outlines a novel material to enable the detection of hydrogen gas. The material combines thin-film metallic glass (TFMG), ultra-nanocrystalline diamond (UNCD), and ZnO nanorods (ZNRs) and can be used as a device for effective hydrogen gas sensing. Three sensors were fabricated by using combinations of pure ZNRs (Z), UNCD/ZNRs (DZ), and TFMG/UNCD/ZNRs (MDZ). The MDZ device exhibited a performance superior to the other configurations, with a sensing response of 34 % under very low hydrogen gas concentrations (10 ppm) at room temperature. Remarkably, the MDZ-based sensor exhibits an ultra-high sensitivity of 60.5 % under 500 ppm H2. The MDZ sensor proved very fast in terms of response time (20 s) and recovery time (35 s). In terms of selectivity, the sensors were particularly suited to hydrogen gas. The sensor achieved the same response performance even after two months, thereby demonstrating the superior stability. It is postulated that the superior performance of MDZ can be attributed to defect-related adsorption as well as charge carrier density. This paper also discusses the respective energy band models of these heterostructures and also the interface effect on the gas sensing enhancements. The results indicate that the proposed hybrid TFMG/UNCD/ZNRs nanostructures could be utilized as high-performance hydrogen gas sensors.  相似文献   

14.
High-integrity solid-contact (SC) polymeric ion sensors have been produced by using spin casting and electropolymerization techniques in the preparation of the SC employing the conductive polymer, poly(3-octylthiophene) (POT). The physical and chemical integrity of the POT SCs have been evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrochemical stability of SC polymeric ion sensors has been investigated using electrochemical impedance spectroscopy (EIS). The results of this study demonstrate that electropolymerization and spin casting methods also comprising annealing of the synthesized SC film are capable of producing SCs that are relatively free of imperfections such as pores and pinholes. This leads to electrochemically stable and robust polymeric ion sensors where the SC/sensor interface is resistant to the formation of a detrimental water layer that normally gives rise to spurious ion fluxes and a degradation in the sensitivity and selectivity of the SC polymeric ion sensor.  相似文献   

15.
Two highly emissive pyrenoviologen derivatives were synthesized and used to fabricate fluorescent sensors for detection of picric acid (PA) with good sensitivity and selectivity.  相似文献   

16.
Electropolymerization regime of meso-tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin is optimized to yield films possessing both electrocatalytical and permselective properties towards nitric oxide oxidation. The sensor composed of electrochemically oxidized carbon fiber, covered solely with nickel porphyrin derivative layer electropolymerized using our method, is characterized by high selectivity towards nitrite (1:600), ascorbate (1:8000) and dopamine (>1:80), determined by constant potential amperometry at 830 mV (vs. Ag/AgCl). Selectivity for ascorbate and dopamine as well as detection limit for NO (1.5 nM at S/N=3) is 5-10 times better than parameters usually reported for Nafion coated porphyrinic sensors. Nafion coating can further enhance selectivity properties as well as aids to the stability of the sensors' responses.  相似文献   

17.
Detection of a trace amount of NO2 at room temperature has very important applications in air quality monitoring,protection of human health and medical diagnose.However,the existing NO2 sensors often suffer from low sensitivity when the concentration at the ppb-level.Here,we report a new kind of materials based on graphdiyne(GDY)for highly sensitive detection of ppb-level(ppb:part per billion)NO2 at room temperature.After thermal treatment of the as-prepared GDY at 600℃under argon atmosphere for 2 h(the obtained sample denoted as GDY-600),the prepared sensor with GDY-600 displays excellent sensitivity with a response value of 6.2%towards 250 ppb NO2 at room temperature,which is better than most of reported sensing materials.In addition,the sensor exhibits significantly high selectivity to NO2 against typical interfering gases including CO,CO2,NH3,H2,H2S and toluene.Moreover,the sensor shows remarkable stability after repetitive measurements.The superior sensing performance of GDY-600 can be ascribed to the highly π-conjugated structure with special acetylenic bonds and abundant oxygen-containing functional groups,which are all beneficial for the gas adsorption and redox reaction on the surface.  相似文献   

18.
氨基酸植物组织传感器的研究   总被引:3,自引:0,他引:3  
选择苹果及仙人球的组织切片作生物催化材料,同氨气敏电极组合,研制了2种对L-谷氨酰胺及L-天冬酰胺选择响应的新型的组织传感器。研究和讨论了传感器的最佳工作条件。用该组织传感器测定了L-天冬酰胺脱氨酶和L-谷氨酰胺脱氨酶的动力学参数K_m和V_m。  相似文献   

19.
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of mercury. This mercury nanocomposite sensor was designed by incorporation of thiolated amino acids capped AuNps into the carbon ionic liquid electrode (CILE) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Hg(II). Mercury ions are expected to interact with amino acids through cooperative metal–ligand interaction to form a stable complex which provides a sensitive approach for electrochemical detection of Hg(II) in the presence of other metal ions. The detection limit was found to be 2.3 nM (S/N = 3) that is lower than the permitted value of Hg(II) reported by the Environmental Protection Agency (EPA) limit of Hg(II) for drinkable water. The proposed nanocomposite electrode exhibits good applicability for monitoring Hg(II) in tap and waste water.  相似文献   

20.
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号