共查询到20条相似文献,搜索用时 11 毫秒
1.
Dr. Nickolas H. Anderson Dr. James Boncella Dr. Aaron M. Tondreau 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(45):10557-10560
A robust and rapid manganese formic acid (FA) dehydrogenation catalyst is reported. The manganese is supported by the recently developed, hybrid backbone chelate ligand tBuPNNOP (tBuPNNOP=2,6-(di-tert-butylphosphinito)(di-tert-butylphosphinamine)pyridine) ( 1 ) and the catalyst is readily prepared with MnBrCO5 to form [(tBuPNNOP)Mn(CO)2][Br] ( 2 ). Dehydrohalogenation of 2 generated the neutral five coordinate complex (tBuPNNOP)Mn(CO)2 ( 3 ). Dehydrogenation of FA by 2 and 3 was found to be highly efficient, exhibiting turnover frequencies (TOFs) exceeding 8500 h−1, rivaling many noble metal systems. The parent chelate, tBuPONOP (tBuPONOP=2,6-bis(di-tert-butylphosphinito)pyridine) or tBuPNNNP (tBuPNNNP=2,6-bis (di-tert-butylphosphinamine)pyridine), coordination complexes of Mn were synthesized, respectively affording [(tBuPONOP)Mn(CO)2][Br] ( 4 ) and [(tBuPNNNP)Mn(CO)2][Br] ( 5 ). FA dehydrogenation with the hybrid-ligand supported 2 exhibits superior catalysis to 4 and 5 . 相似文献
2.
Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N,N′‐Diimine Ligand in Water 下载免费PDF全文
Zhijun Wang Dr. Sheng‐Mei Lu Dr. Jun Li Dr. Jijie Wang Prof. Can Li 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(36):12592-12595
Hydrogen production from the dehydrogenation of formic acid (FA) is promising. Most of the current catalysts for FA dehydrogenation are effective only in the presence of bases or additives. We report here newly developed iridium complexes containing conjugated N,N′‐diimine ligands for FA dehydrogenation in water without the addition of bases or additives. A turnover frequency (TOF) of 487 500 h?1 with [Cp*Ir( L1 )Cl]Cl ( L1 =2,2′‐bi‐2‐imidazoline) at 90 °C and a turnover number (TON) of 2 400 000 with in situ prepared catalyst from [IrCp*Cl2]2 and 2,2′‐bi‐1,4,5,6‐tetrahydropyrimidine ( L2 ) at 80 °C were obtained, the highest values reported for FA dehydrogenation to date. A mechanistic study reveals that the formation of [Ir‐H] intermediate species is the rate‐determining step in the catalytic cycle. 相似文献
3.
Wei Zhou Zhihong Wei Dr. Anke Spannenberg Dr. Haijun Jiao Dr. Kathrin Junge Dr. Henrik Junge Prof. Dr. Matthias Beller 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(36):8459-8464
Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3 . Compared to related ruthenium and manganese complexes 7 and 8 , this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. 相似文献
4.
M. Victoria Jimnez Ana I. Ojeda-Amador Raquel Puerta-Oteo Joaquín Martínez-Sal Vincenzo Passarelli Jesús J. Prez-Torrente 《Molecules (Basel, Switzerland)》2022,27(22)
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings. 相似文献
5.
Dr. Masayuki Iguchi Dr. Naoya Onishi Dr. Yuichiro Himeda Dr. Hajime Kawanami 《Chemphyschem》2019,20(10):1296-1300
Aiming to develop a highly effective and durable catalyst for high-pressure H2 production from dehydrogenation of formic acid (DFA), the ligand effect on the catalytic activity and stability of Cp*Ir (Cp*:pentamethylcyclopentadienyl anion) complexes were investigated using 5 different kinds of N,N’-bidentate ligands (bipyridine, biimidazoline, pyridyl-imidazoline, pyridyl-pyrazole and picolinamide). The Ir complex with biimidazoline ligand exhibited the highest catalytic activity, but deactivation occurred readily at high pressure. The pyridine moiety in the ligand can enhance the stability of Ir complex catalysts for the high-pressure reaction. The Ir complex catalyst containing pyridyl-imidazoline ligand showed the high activity and best stability under the high-pressure conditions. 相似文献
6.
Dr. Gabriel Menendez Rodriguez Dr. Francesco Zaccaria Leonardo Tensi Prof. Cristiano Zuccaccia Prof. Paola Belanzoni Prof. Alceo Macchioni 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(6):2050-2064
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≠≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≠≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible. 相似文献
7.
《化学:亚洲杂志》2017,12(8):860-867
Pd nanoparticles (NPs) supported on Ti‐doped graphitic carbon nitride (g‐C3N4) were synthesized by a deposition–precipitation route and a subsequent reduction with NaBH4. The features of the NPs were studied by XRD, TEM, FTIR, XPS, EXAFS and N2‐physisorption measurements. It was found that the NPs had an average size of 2.9 nm and presented a high dispersion on the surface of Ti‐doped g‐C3N4. Compared to Pd loaded on pristine g‐C3N4, the Pd NPs supported on Ti‐doped g‐C3N4 exhibited a high catalytic activity in formic acid dehydrogenation in water at room temperature. The enhanced activity could be attributed to the small Pd NPs size, as well as the strong interaction between Pd NPs and Ti‐doped g‐C3N4. 相似文献
8.
Manuel Ojeda Dr. Enrique Iglesia Prof. 《Angewandte Chemie (International ed. in English)》2009,48(26):4800-4803
Selective HCOOH decomposition to H 2 /CO 2 on Au : Au species catalyze HCOOH dehydrogenation at higher rates than on Pt, previously considered the most active metal. Dehydrogenation occurs through formate decomposition limited by H2 desorption on Au species undetectable by TEM. CO did not form (<10 ppm), making products suitable for low‐temperature fuel cells.
9.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities. 相似文献
10.
Naoya Onishi Ryoichi Kanega Hajime Kawanami Yuichiro Himeda 《Molecules (Basel, Switzerland)》2022,27(2)
Recently, there has been a strong demand for technologies that use hydrogen as an energy carrier, instead of fossil fuels. Hence, new and effective hydrogen storage technologies are attracting increasing attention. Formic acid (FA) is considered an effective liquid chemical for hydrogen storage because it is easier to handle than solid or gaseous materials. This review presents recent advances in research into the development of homogeneous catalysts, primarily focusing on hydrogen generation by FA dehydrogenation. Notably, this review will aid in the development of useful catalysts, thereby accelerating the transition to a hydrogen-based society. 相似文献
11.
12.
Dr. Xiang Li Dr. Annette-Enrica Surkus Dr. Jabor Rabeah Dr. Muhammad Anwar Dr. Sarim Dastigir Dr. Henrik Junge Prof. Dr. Angelika Brückner Prof. Dr. Matthias Beller 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(37):15983-15988
Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. 相似文献
13.
14.
采用硼氢化钠还原的方法合成了碳纳米管负载的钯基纳米催化剂(Pd/CNT,Pd7Ag3/CNT,Pd7Sn2/CNT,Pd7Ag1Sn2/CNT,Pd7Ag2Sn2/CNT和Pd7Ag3Sn2/CNT)。通过XRD,TEM和XPS对其进行了表征,结果表明,相比Pd/CNT和Pd-Ag(或Pd-Sn)催化剂的纳米颗粒,Pd-Ag-Sn催化剂展现出了更小的平均颗粒尺寸(2.3 nm)。此外,还通过循环伏安(CV)和计时电流法(CA)测试了这些催化剂对甲酸氧化的电活性,在酸碱介质中,Pd-Ag-Sn/CNT对甲酸氧化都表现出了更高的电流密度。其中,Pd7Ag2Sn2/CNT催化剂在酸碱介质中的电流密度分别是108.8和211.3 mA·cm-2,相应的Pd质量电流密度高达1 364和2 640 mA·mg-1,远远高于商业Pd/C,表明Pd-Ag-Sn/CNT催化剂对甲酸氧化表现出了极好的电催化活性。 相似文献
15.
16.
Qian‐Qian Lu Prof. Dr. Hai‐Zhu Yu Prof. Dr. Yao Fu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(13):4584-4591
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine‐ligated aluminum hydride complex (PDI2?)Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O?H bond cleavage of HCOOH promoted by aluminum–ligand cooperation, followed by HCOOH‐assisted Al?H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex (H,HPDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β‐hydride elimination of (H,HPDI)Al(OOCH)3 to produce CO2, and the formed (H,HPDI)Al(OOCH)2H mediates HCOOH to release H2. 相似文献
17.
Xiang Li Annette‐Enrica Surkus Jabor Rabeah Muhammad Anwar Sarim Dastigir Henrik Junge Angelika Brückner Matthias Beller 《Angewandte Chemie (International ed. in English)》2020,59(37):15849-15854
Metal–organic framework (MOF)‐derived Co‐N‐C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co‐N‐C catalyst achieves superior activity, better acid resistance, and improved long‐term stability compared with nanoparticles synthesized by a similar route. High‐angle annular dark‐field–scanning transmission electron microscopy, X‐ray photoelectron spectroscopy, electron paramagnetic resonance, and X‐ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low‐cost catalyst is a promising candidate for liquid H2 generation. 相似文献
18.
Hydrogen from Formic Acid through Its Selective Disproportionation over Sodium Germanate—A Non‐Transition‐Metal Catalysis System 下载免费PDF全文
Dr. Ruth I. J. Amos Dr. Falk Heinroth Dr. Bun Chan Sisi Zheng Prof. Brian S. Haynes Prof. Christopher J. Easton Prof. Anthony F. Masters Prof. Leo Radom Prof. Thomas Maschmeyer 《Angewandte Chemie (International ed. in English)》2014,53(42):11275-11279
A robust catalyst for the selective dehydrogenation of formic acid to liberate hydrogen gas has been designed computationally, and also successfully demonstrated experimentally. This is the first such catalyst not based on transition metals, and it exhibits very encouraging performance. It represents an important step towards the use of renewable formic acid as a hydrogen‐storage and transport vector in fuel and energy applications. 相似文献
19.
Prof. Süleyman Gülcemal Prof. Derya Gülcemal Dr. George F. S. Whitehead Prof. Jianliang Xiao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(30):10513-10522
A series of new IrIII complexes with carbene ligands that contain a range of benzyl wingtip groups have been prepared and fully characterised by NMR spectroscopy, HRMS, elemental analysis and X‐ray diffraction. All the complexes were active in the acceptorless dehydrogenation of alcohol substrates in 2,2,2‐trifluoroethanol to give the corresponding carbonyl compounds. The most active complex bore an electron‐rich carbene ligand; this complex was used to catalyse the highly efficient and chemoselective dehydrogenation of a wide range of secondary alcohols to their respective ketones, with turnover numbers up to 1660. Mechanistic studies suggested that the turnover of the dehydrogenation reaction is limited by the H2‐formation step. 相似文献
20.
将萘-1-亚甲基膦酸通过π-π堆积作用修饰在多壁碳纳米管(MWCNT)上,然后制备了MWCNT载Pd(Pd/MWCNT)催化剂。 利用Pd和HAuCl4间的置换反应制得MWCNT载Pd-Au(Pd-Au/MWCNT)催化剂。 透射电子显微镜(TEM)、X射线光电子能谱(XPS)和X射线衍射光谱(XRD)测试结果显示,非合金化的Pd-Au纳米粒子均匀分布在MWCNT表面。 循环伏安和计时电流测试显示,非合金化Pd-Au/MWCNT催化剂对甲酸氧化的电催化活性以及稳定性优于Pd/MWCNT催化剂。 相似文献