首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New polymer electrolyte films of lithium tetrafluoroborate (LiBF4)-complexed poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) embedded with different quantities of 1-ethyl-3methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid were prepared by solution casting. The prepared films were characterized using various techniques: X-ray diffraction, scanning electron microscopy, impedance spectroscopy and electrochemical measurements. The pure PVdF-HFP possessed a semi-crystalline structure and its amorphicity increased with the addition of LiBF4 salt and EMIMBF4 ionic liquid. The size and interconnection of pores in the films were enhanced by EMIMBF4. Impedance measurements indicated that the room-temperature ionic conductivity of the films increased with increasing EMIMBF4 concentration until 15 wt.%, being up to 0.202 × 10−4 S cm−1, and then decreased with further increasing EMIMBF4 concentration. In addition, the temperature-dependent ionic conductivity of the polymer electrolyte films followed an Arrhenius relation and the 15 wt.% EMIMBF4-incorporated gel polymer electrolyte film exhibited a low activation energy for ionic conduction, being about 0.28 eV. Finally, the electrochemical stability window of the 85PVdF-HFP:15LiBF4+15 EMIMBF4 gel polymer electrolyte films was evaluated as approximately 4.4 V, which is a promising value for ion battery applications.  相似文献   

2.
Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10−4 S cm−1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200–600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.  相似文献   

3.
Anion receptor-coated separators were prepared by coating poly(ethylene glycol) borate ester (PEGB) as an anion receptor and poly(vinyl acetate) (PVAc) as a good adhesive material towards electrodes onto microporous polyethylene (PE) separators. Gel polymer electrolytes were fabricated by soaking them in an liquid electrolyte, 1 M LiPF6 in EC/DEC/PC (30/65/5, wt.%). As the weight ratio of PEGB to PVAc in a coating layer increased, gel polymer electrolytes showed higher cationic conductivity and electrochemical stability. The cationic conductivity and electrochemical stability of the gel polymer electrolyte based on coated separator with PVAc/PEGB (2/5, weight ratio) could reach 2.8 × 10–4 S cm–1 and 4.8 V, respectively. Lithium-ion polymer cells (LiCoO2/graphite) based on gel polymer electrolytes with and without PEGB were assembled, and their electrochemical performances were evaluated.  相似文献   

4.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

5.
Composite gel polymer electrolytes composed of poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP) and polymethylmethacrylate PMMA polymers, PC + DEC as plasticizer and LiCF3SO3 as salt and fumed silica as filler have been synthesized by solvent casting technique with varying plasticizer-filler ratio systematically. Films of thickness in the range of 40-70 μm were characterized by a.c. impedance measurements in the temperature range 303 K to 373 K. Addition of filler to the polymer electrolyte was found to result in an enhancement of the ionic conductivity. A maximum electrical conductivity of ∼1 × 10−3 S/cm at 303 K and ∼2.1 × 10−3 S/cm at 373 K has been achieved with the dispersion of the SiO2. FTIR spectral studies confirmed the polymer-salt interaction. XRD patterns exhibit the increased amorphicity in the blended composite gel polymer electrolytes. Scanning electron micrograph shows the dispersion of SiO2 particle in the polymer electrolyte.  相似文献   

6.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

7.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

8.
Various iodide ion conducting polymer electrolytes have been studied as candidate materials for fabricating photoelectrochemical (PEC) solar cells and energy storage devices. In this study, enhanced ionic conductivity values were obtained for the ionic liquid tetrahexylammonium iodide containing polyethylene oxide (PEO)-based plasticized electrolytes. The analysis of thermal properties revealed the existence of two phases in the electrolyte, and the conductivity measurements showed a marked conductivity enhancement during the melting of the plasticizer-rich phase of the electrolyte. Annealed electrolyte samples showed better conductivity than nonannealed samples, revealing the existence of hysteresis. The optimum conductivity was shown for the electrolytes with PEO:salt = 100:15 mass ratio, and this sample exhibited the minimum glass transition temperature of 72.2 °C. For this optimum PEO to salt ratio, the conductivity of nonannealed electrolyte was 4.4 × 10−4 S cm−1 and that of the annealed sample was 4.6 × 10−4 S cm−1 at 30 °C. An all solid PEC solar cell was fabricated using this annealed electrolyte. The short circuit current density (I SC), the open circuit voltage (V OC), and the power conversion efficiency of the cell are 0.63 mA cm−2, 0.76 V, and 0.47% under the irradiation of 600 W m−2 light.  相似文献   

9.
《Solid State Sciences》2012,14(8):1111-1116
Polymer electrolyte has been prepared via solution-casting technique. The polymer electrolytes are formed from polyethylene oxide (PEO) and lithium hexafluorate is used as the doping salt. The conductivity increases from 10−9 to 10−4 S cm−1 upon the addition of various concentrations of salt. The results reveal that the conductivity increases with increasing temperature when the salt concentration increases up to 20 wt% The conductivity for 20 wt% of salt remains similar to the conductivity for 15 wt% of salt at 318 K. Differential scanning calorimetry studies show that the melting transition temperature and crystallinity decreases upon the addition of various concentrations of salt. Thermogravimetric analysis (TGA) results indicate that a significant effect on the thermal stability of polyethylene–lithium salt composites. SEM images reveal that the morphology of polymer electrolyte's surface changes when various concentrations of salt are added into the polymer system.  相似文献   

10.
The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10−2 S cm−1 at 40 °C with the activation energy of 4.86 kJ mol−1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li+ and imidazolium, [Amim]+) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.  相似文献   

11.
The plasticized polymer electrolytes composed of poly(epichlorohydrin-ethyleneoxide) (P(ECH-EO)) as host polymer, lithium perchlorate (LiClO4) as salt, γ-butyrolactone (γ-BL), and propylene carbonate (PC) as plasticizer have been prepared by simple solution casting technique. The effect of mixture of plasticizers γ-BL and PC on conductivity of the polymer electrolyte P(ECH-EO):LiClO4 has been studied. The band at 457 cm−1 in the Raman spectra of plasticized polymer electrolyte is attributed to both the ring twisting mode of PC and the perchlorate ν 2(ClO4) bending. The maximum conductivity value is observed to be 4.5 × 10−4 S cm−1 at 303 K for 60P(ECH-EO):15PC:10γ-BL:15LiClO4 electrolyte system. In the present investigation, an attempt has been made to correlate the Raman and conductivity data.  相似文献   

12.
The study has prepared highly conducting polymer electrolyte films using solution cast technique with poly(vinylidene fluoride-co-hexafluoropropylene) PVDF-HFP, mixture of ethylene carbonate (EC), and propylene carbonate (PC) as plasticizer and latex of Calotropis gigantea (CGL) as an ionic source. In this study, four films are prepared using PVDF-HFP:CGL in ratio 1:1 with the increasing concentration of EC+PC as 1, 2, 3, and 4 M named as 1:1:1, 1:1:2, 1:1:3, 1:1:4. The prepared polymer electrolyte is examined by polarized optical microscopy (POM), elemental dispersive X-ray technique (EDX), and complex impedance spectroscopy. EDX and POM are studied for the surface morphology of all prepared samples and to investigate the porous nature of films. The enhancement in ionic conductivity occurs due to CGL and increasing amount of EC-PC. Conductivity of highest composition (1:1:4) polymer electrolyte film is found to be ≈10−3 S cm−1. The optimized polymer electrolyte film is considered as a promising candidate for application in supercapacitors.  相似文献   

13.
《Solid State Sciences》2012,14(5):598-606
Gel polymer electrolytes containing 1-ethyl-3-methylimidazolium-bis (trifluoromethyl-sulfnyl)imide (EMITFSI) ionic liquid were prepared for lithium ion batteries by solution casting method. Thermal and electrochemical properties have been determined for the gel polymer electrolytes. Proper addition of EMITFSI to the P(VdF-HFP)-LiTFSI polymer electrolyte improves the ionic conductivity and electrochemical window to 2.11 × 10−3 S cm−1 (30 °C) and 4.6 V. In combination of the prepared ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes, Li4Ti5O12 anode exhibited two extra voltage plateaus around 1.1 V and 2.3 V except the typical voltage plateau around 1.6 V by possible side reaction between ionic liquid and polymer. LiFePO4 cathode exhibited high capacity above 140 mA h g−1 and retention of 93.1% due to the suppressed polarization effect caused by enhanced ion transport properties. The high temperature of 80 °C didn't have significant impact on the cycling performance.  相似文献   

14.
Effect of fumed silica dispersion on poly(vinylidene fluoride-co-hexafluoropropylene)-based magnesium ion-conducting gel polymer electrolyte has been studied using various physical and electrochemical techniques. The composite gel electrolytes are free-standing and flexible films with enough mechanical strength. The optimized composition with 3 wt.% filler offers a maximum ionic conductivity of ∼1.1 × 10−2 S cm−1 at ∼25 °C with good thermal and electrochemical stabilities. The Mg2+ ion conduction in the gel nanocomposite film is confirmed from the cyclic voltammetry, impedance spectroscopy, and transport number measurements. The space-charge layers formed between filler particles and gel electrolyte are responsible for the enhancement in ionic conductivity. The applicability of the gel nanocomposite to a rechargeable battery is examined by fabricating a prototype cell consisting of Mg [or Mg-multiwalled carbon nanotube (MWCNT) composite] and MoO3 as negative and positive electrodes, respectively. The discharge capacity and the rechargeability of the cell have been improved when Mg metal is substituted by Mg-MWCNT composite. The discharge capacity of the optimized cell has found to be ∼175 mAh g−1 of MoO3 for an initial ten charge–discharge cycles.  相似文献   

15.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

16.
This study reports on the preparation of a composite polymer electrolyte for secondary lithium-ion battery. Poly(vinylidiene fluoride-hexafluoropropylene) (P(VDF-HFP)) was used as the polymer host, and mesoporous SBA-15 (silica) ceramic fillers used as the solid plasticizer were added into the polymer matrix. The SBA-15 fillers with mesoporous structure and high specific surface can trap more liquid electrolytes to enhance the ionic conductivity. The ionic conductivity of P(VDF-HFP)/SBA-15 composite polymer electrolytes was in the order of 10−3 S cm−1 at room temperature. The characteristic properties of the composite polymer membranes were examined by using FTIR spectroscopies, scanning electron microscopy (SEM), and an AC impedance method. For comparison, the LiFePO4/Li composite batteries with a conventional microporous polyethylene (PE) separator and pure P(VDF-HFP) polymer membrane were also prepared and studied. As a result, the LiFePO4/Li composite battery comprised the P(VDF-HFP)/10 wt.% m-SBA-15 composite polymer electrolyte, which achieves an optimal discharge capacity of 88 mAh g−1 at 20 C rate with a high coulomb efficiency of 95%. It is demonstrated that the P(VDF-HFP)/m-SBA-15 composite membrane exhibits as a good candidate for application to LiFePO4 polymer batteries.  相似文献   

17.
To study the effect of nanofiller particle TiO2 on sodium (Na+) – ion conducting solid polymer electrolyte (SPE) film: [80PEO:20NaPF6] and nanocomposite polymer electrolyte (NCPE): [80PEO:20NaPF6] + xTiO2, where x = 1–9 wt. (%) have been prepared. SPE film composition: [80PEO:20NaPF6] selects as Ist-phase host and nano-sized (<100 nm) filler materials TiO2 as IInd-phase dispersoid. Both SPE and NCPE films have been prepared by the hot-press technique. Filler particle-dependent conductivity study reveals the NCPE system: [80PEO:20NaPF6] + 8TiO2 as the highest conducting composition with σrt − 3.53 × 10−6 S cm−1, which is approximately one order of magnitude higher than the SPE optimum conducting composition (OCC) (σrt) ≈ 7.78 × 10−7 S cm−1. Ion transport properties for both SPE and NCPE system have been evaluated in terms of ionic conductivity (σ) and total ionic (tion)/cationic (t+) transference numbers using combined AC/DC techniques in order to evaluate its usefulness in all-solid-state battery applications. Structural/thermal properties have been characterized using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. A cyclic voltammetry (CV) study has been performed in SPE and NCPE OCC film to evaluate the electrochemical performance for battery application.  相似文献   

18.
The potential applications of carbon black are expected to grow as science and technology improve offering up new possibilities for innovation throughout disciplines included in the field of energy storage. The present work shows the influence of carbon black to improve the ionic conductivity of the polymer electrolyte. The synthesis of polyethylene oxide: ammonium iodide based polymer electrolyte incorporated with carbon black varying from 0.01 to 0.06 wt% with respect to PEO: NH4I system by solution casting method. Different characterizations like polarized optical microscopy (POM), impedance spectroscopy, and ionic transference number (tion) are studied in detail. The maximum ionic conductivity is achieved at 0.05 wt% carbon black shows 1.20 × 10−5 S cm−1 at ambient temperature. In accordance with POM data, the amorphous region has increased whereas the crystalline region has shrunk which further indicated the increase in ionic conductivity . The value of (tion) is calculated to be 0.97 which shows the system is ionic in nature. PEO based polymer electrolyte doped carbon black can be used for the fabrication of energy storage devices.  相似文献   

19.
A series of all-solid polymer electrolytes were prepared by cross-linking new designed poly(organophosphazene) macromonomers. The ionic conductivities of these all-solid, dimensional steady polymer electrolytes were reported. The temperature dependence of ionic conductivity of the all-solid polymer electrolytes suggested that the ionic transport is correlated with the segmental motion of the polymer. The relationship between lithium salts content and ionic conductivity was discussed and investigated by Infrared spectrum. Furthermore, the polarity of the host materials was thought to be a key to the ionic conductivity of polymer electrolyte. The all-solid polymer electrolytes based on these poly(organophosphazenes) showed ionic conductivity of 10−4 S cm−1 at room temperature.  相似文献   

20.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号