首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of carbon dioxide as a raw material for chemical syntheses is an ecologically and economically valuable extension to the carbon sources used at the present time. In order to convert the thermodynamically stable and comparatively unreactive CO2 molecule into the desired product in an efficient manner, suitable reaction conditions and activation mechanisms must be found. The catalytic reduction of CO2 to formic acid and its derivatives has been intensively studied in recent years. A number of new approaches to the synthesis of formic acid from CO2 have reached such a state of knowledge that continuing development may well lead to industrial-scale operation in the near future. This can to a large extent be attributed to the fruitful interaction between investigative work into reaction mechanisms and the development of new catalytic systems.  相似文献   

2.
A CO2-mediated hydrogen storage energy cycle is a promising way to implement a hydrogen economy, but the exploration of efficient catalysts to achieve this process remains challenging. Herein, sub-nanometer Pd–Mn clusters were encaged within silicalite-1 (S-1) zeolites by a ligand-protected method under direct hydrothermal conditions. The obtained zeolite-encaged metallic nanocatalysts exhibited extraordinary catalytic activity and durability in both CO2 hydrogenation into formate and formic acid (FA) dehydrogenation back to CO2 and hydrogen. Thanks to the formation of ultrasmall metal clusters and the synergic effect of bimetallic components, the PdMn0.6@S-1 catalyst afforded a formate generation rate of 2151 molformate molPd−1 h−1 at 353 K, and an initial turnover frequency of 6860 mol molPd−1 h−1 for CO-free FA decomposition at 333 K without any additive. Both values represent the top levels among state-of-the-art heterogeneous catalysts under similar conditions. This work demonstrates that zeolite-encaged metallic catalysts hold great promise to realize CO2-mediated hydrogen energy cycles in the future that feature fast charge and release kinetics.  相似文献   

3.
A viable storage system for hydrogen based on selective formic acid decomposition into H2 and CO2 has been developed (see scheme). Continuous generation of H2 of very high purity, over a wide range of pressures and under mild conditions was achieved.

  相似文献   


4.
A mild photochemical approach was applied to construct highly coupled metal–semiconductor dyads, which were found to efficiently facilitate the hydrogenation of nitrobenzene. Aniline was produced in excellent yield (>99 %, TOF: 1183) using formic acid as hydrogen source and water as solvent at room temperature. This general and green catalytic process is applicable to a wide range of nitroarenes without the involvement of high‐pressure gases or sacrificial additives.  相似文献   

5.
A new multicomponent coupling reaction for the enantioselective synthesis of pyrrolo[1,2‐a]indoles under the catalysis of a chiral disulfonimide is described. The high specificity of the reaction is a consequence of the multidentate character of the Brønsted acid catalyst. Insights from DFT calculations helped explain the unexpected high enantioselectivity observed with the simplest 3,3′‐unsubstituted binaphthyl catalyst as a result of transition‐state stabilization by a network of cooperative noncovalent interactions. The remarkable enantioinversion resulting from the simple introduction of substituents at 3‐ and 3′‐positions, the first reported example of this phenomenon in the context of binaphthalene‐derived Brønsted acid catalysis, was instead attributed to destabilizing steric interactions.  相似文献   

6.
Aiming to develop a highly effective and durable catalyst for high-pressure H2 production from dehydrogenation of formic acid (DFA), the ligand effect on the catalytic activity and stability of Cp*Ir (Cp*:pentamethylcyclopentadienyl anion) complexes were investigated using 5 different kinds of N,N’-bidentate ligands (bipyridine, biimidazoline, pyridyl-imidazoline, pyridyl-pyrazole and picolinamide). The Ir complex with biimidazoline ligand exhibited the highest catalytic activity, but deactivation occurred readily at high pressure. The pyridine moiety in the ligand can enhance the stability of Ir complex catalysts for the high-pressure reaction. The Ir complex catalyst containing pyridyl-imidazoline ligand showed the high activity and best stability under the high-pressure conditions.  相似文献   

7.
Highly efficient electrochemical reduction of CO2 into value‐added chemicals using cheap and easily prepared electrodes is environmentally and economically compelling. The first work on the electrocatalytic reduction of CO2 in ternary electrolytes containing ionic liquid, organic solvent, and H2O is described. Addition of a small amount of H2O to an ionic liquid/acetonitrile electrolyte mixture significantly enhanced the efficiency of the electrochemical reduction of CO2 into formic acid (HCOOH) on a Pb or Sn electrode, and the efficiency was extremely high using an ionic liquid/acetonitrile/H2O ternary mixture. The partial current density for HCOOH reached 37.6 mA cm?2 at a Faradaic efficiency of 91.6 %, which is much higher than all values reported to date for this reaction, including those using homogeneous and noble metal electrocatalysts. The reasons for such high efficiency were investigated using controlled experiments.  相似文献   

8.
9.
10.
The use of abundantly available transition metals in reactions that have been preferentially mediated by rare noble metals, for example, hydrogenations, is a desirable aim in catalysis and an attractive strategy for element conservation. The observation of novel selectivity patterns with such inexpensive metal catalysts is especially appealing. Herein, we report a novel, robust, and reusable cobalt catalyst that permits the selective hydrogenation of nitroarenes in the presence of highly hydrogenation‐sensitive functional groups, as well as the direct synthesis of imines from nitroarenes and aldehydes or ketones in the presence of such substituents. Furthermore, we introduce the first base‐metal‐mediated direct synthesis of benzimidazoles from nitroarenes and aldehydes. Functional groups that are easy to hydrogenate are again well tolerated.  相似文献   

11.
A Zr-based metal-organic framework has been synthesized and employed as a catalyst for photochemical carbon dioxide reduction coupled with water oxidation. The catalyst shows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property, which is further confirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbon dioxide with a turn-over frequency (TOF) of 0.69 h−1 in addition to oxygen, which was produced with a TOF of 0.54 h−1. No external photosensitizer is used and the ligand itself acts as the light harvester. The efficient and selective photochemical carbon dioxide reduction to formic acid with concomitant water oxidation using Zr-based MOF as catalyst is thus demonstrated here.  相似文献   

12.
张四纯  李华  武亚艳 《分析化学》2001,29(2):150-153
新合成的N(2-四氢苯并噻唑)-2-羟基苯甲亚胺希夫碱与酸性高锰酸钾反应产生微弱的化学发光,甲酸的存在有显著的增敏作用。报道了其荧光光谱、化学发光光谱、紫外可见吸收光谱和化学发光动力学曲线,并建立了流动注射化学发光测定噻唑类希夫碱的方法。该法线性范围为1.0×10-7~8.0×10-5mol/L,检测限为5.0×10-8mol/L,对1.0×10-6mol/L噻唑类希夫碱11次平行测定的相对标准偏差为1.7%。  相似文献   

13.
Facile and selective reduction of aromatic aldehydes as well as aliphatic aldehydes to alcohols was achieved using formic acid as the hydrogen donor in the presence of a catalytic amount of Pd(OAc)2 and Cy3P. It was found that both hydrogen atoms in the formic acid molecule can serve as the hydride source.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   


14.
Synergy with potential: Analysis of relevant mechanistic pathways by density functional theory, reveals the synergistic role of co-adsorbed CO and OH in promoting HCOOH electrooxidation on Pt(111). Kinetic models derived from these studies show the atomistic surface phenomena underlying the experimental CV observation in the potential range between 0.0 and 1.2?V.  相似文献   

15.
Formic acid is one of the most desirable liquid hydrogen carriers. The selective production of formic acid from monosaccharides in water under mild reaction conditions using solid catalysts was investigated. Calcium oxide, an abundant solid base catalyst available from seashell or limestone by thermal decomposition, was found to be the most active of the simple oxides tested, with formic acid yields of 50 % and 66 % from glucose and xylose, respectively, in 1.4 % H2O2 aqueous solution at 343 K for 30 min. The main reaction pathway is a sequential formation of formic acid from glucose by C−C bond cleavage involving aldehyde groups in the acyclic form. The reaction also involves base-catalyzed aldose-ketose isomerization and retroaldol reaction, resulting in the formation of fructose and trioses including glyceraldehyde and dihydroxyacetone. These intermediates were further decomposed into formic acid or glycolic acid. The catalytic activity remained unchanged for further reuse by a simple post-calcination.  相似文献   

16.
17.
A new catalyst for the carboxylative synthesis of arylacetic and benzoic acids using formic acid (HCOOH) as the CO surrogate was developed. In an improvement over previous work, CO is generated in situ without the need for any additional activators. Key to success was the use of a specific system consisting of palladium acetate and 1,2‐bis((tert‐butyl(2‐pyridinyl)phosphinyl)methyl)benzene. The generality of this method is demonstrated by the synthesis of more than 30 carboxylic acids, including non‐steroidal anti‐inflammatory drugs (NSAIDs), under mild conditions in good yields.  相似文献   

18.
电催化还原二氧化碳制备甲酸是备受关注的热点问题。而电极材料是决定还原效率的重要因素。本文通过电沉积方法在泡沫铜上直接制备纳米结构硫化亚铜薄膜,并采用扫描电镜(SEM)、X射线衍射(XRD)对其结构性能进行了系统研究。以硫化亚铜作为阴极电催化材料、0.5 mol·L-1 1-丁基-3-甲基咪唑四氟硼酸盐的乙腈溶液为电解液,在该体系中可高效催化转化二氧化碳为甲酸。结果表明,这一电解体系可有效实现电化学反应,甲酸的法拉第效率(FEHCOOH)可以达到85%,同时甲酸还原电流密度可达到5.3 mA·cm-2。  相似文献   

19.
Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号