首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The recent introduction of polymerase chain reaction (PCR)-massively parallel sequencing (MPS) technologies in forensics has changed the approach to allelic short tandem repeat (STR) typing because sequencing cloned PCR fragments enables alleles with identical molecular weights to be distinguished based on their nucleotide sequences. Therefore, because PCR fidelity mainly depends on template integrity, new technical issues could arise in the interpretation of the results obtained from the degraded samples. In this work, a set of DNA samples degraded in vitro was used to investigate whether PCR-MPS could generate “isometric drop-ins” (IDIs; i.e., molecular products having the same length as the original allele but with a different nucleotide sequence within the repeated units). The Precision ID GlobalFiler NGS STR panel kit was used to analyze 0.5 and 1 ng of mock samples in duplicate tests (for a total of 16 PCR-MPS analyses). As expected, several well-known PCR artifacts (such as allelic dropout, stutters above the threshold) were scored; 95 IDIs with an average occurrence of 5.9 IDIs per test (min: 1, max: 11) were scored as well. In total, IDIs represented one of the most frequent artifacts. The coverage of these IDIs reached up to 981 reads (median: 239 reads), and the ratios with the coverage of the original allele ranged from 0.069 to 7.285 (median: 0.221). In addition, approximately 5.2% of the IDIs showed coverage higher than that of the original allele. Molecular analysis of these artifacts showed that they were generated in 96.8% of cases through a single nucleotide change event, with the C > T transition being the most frequent (85.7%). Thus, in a forensic evaluation of evidence, IDIs may represent an actual issue, particularly when DNA mixtures need to be interpreted because they could mislead the operator regarding the number of contributors. Overall, the molecular features of the IDIs described in this work, as well as the performance of duplicate tests, may be useful tools for managing this new class of artifacts otherwise not detected by capillary electrophoresis technology.  相似文献   

2.
Semi‐nested PCR with allele‐specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP‐STR markers were available to identify the minor DNA component using AS‐PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP‐STR markers. Five pairs of allele‐specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS‐PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (~30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS‐PCR combined with semi‐nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.  相似文献   

3.
Unbalanced and degraded mixtures (UDM) are frequently encountered during forensic DNA analysis. For example, forensic DNA units regularly encounter DNA mixture signal where the DNA signal from the alleged offender is masked or swamped by high quantities of DNA from the victim. Our previous data presented a new kind of DNA markers that composed of a deletion/insertion polymorphism (DIP) and a SNP and we termed this new kind of microhaplotypes DIP‐SNP (combination of DIP and SNP). Since such markers could be designed short enough for degraded DNA amplification, we hypothesized that DIP‐SNP markers are applicable for typing of UDM. In this study, we developed a new set of DIP‐SNPs with short amplicons which were complement to our prior developed system. The multiplex PCR and SNaPshot assay were established for 20 DIP‐SNPs in a Chinese Han population. The DIP‐SNPs were capable of detecting the minor contributor's allele in home‐made DNA mixture with sensitivities from 1:100 to 1:1000 with a total of 1 –10 ng input DNA. Moreover, this system successfully typed the degraded DNA whether it came from the single source or mixture samples. In Chinese population, the system showed an average informative value of 0.293 and combined informative value of 0.998363862. Our results demonstrated that DIP‐SNPs may serve as a valuable tool in detection of UDM in forensic medicine.  相似文献   

4.
DNA genotyping from trace and highly degraded biological samples is one of the most significant challenges of forensic DNA identification. There is a lack of simple and effective methods for genotyping highly degraded samples. In this study, a multiple loci insertion/deletion polymorphisms (Multi-InDels) panel was designed for detecting 18 autosomal Multi-InDels through capillary electrophoresis (CE) with amplicon sizes no longer than 125 bp. Studies of sensitivity, degradation, and species specificity were performed and a population study was carried out using 192 samples from Han populations in Hunan province in the south of China. The combined random match probability (CMP) of these 18 Multi-InDels was 3.23 × 10–12 and the cumulative probability of exclusion (CPE) was 0.9989, suggesting this panel could be used independently for human identification and could provide efficient supporting information for parentage testing. Complete profiles were obtained from as low as 62.5 pg of total input DNA after increasing the number of PCR cycles. Moreover, all alleles were detected from artificially highly degraded DNA after 80 min of boiling water bath treatment. This 18 Multi-InDels panel is simple, fast, and effective for the forensic analysis of highly degraded DNA.  相似文献   

5.
《Electrophoresis》2017,38(6):876-885
We have developed and validated a novel method for quantitative detection of SNPs by using pyrosequencing with di‐base addition (PDBA). Based on the principle that the signal intensity is proportional to the template concentration within a linear concentration range, linear formula (Y = AX + B ) for each genotype is established, and the relationship between two genotypes of a single SNP can be resolved by corresponding linear formulas. Here, PDBA assays were developed to detect variants rs6717546 and rs4148324, and the linear formulas for each genotype of rs6717546 and rs4148324 were established. The method allowed to quantitatively determine each genotype and showed 100% accordant results against a panel of defined mixtures. A set of 24 template fragments containing variants rs6717546 or rs4148324 was tested to evaluate the method. Our results showed that allele frequency of each genotype was accurately quantified, with results comparable to those of conventional pyrosequencing. Furthermore, this method was capable of detecting alleles with frequencies as low as 3%, which was more sensitive than ∼5 to ∼7% level detected by conventional pyrosequencing. This method offers high sensitivity, reproducibility, and relatively low costs, and thus could provide a much‐needed approach for quantitative analysis of SNPs in clinical samples.  相似文献   

6.
《中国化学快报》2022,33(8):4126-4132
Liquid biopsy is a highly promising method for non-invasive detection of tumor-associated nucleic acid fragments in body fluids but is challenged by the low abundance of nucleic acids of clinical interest and their sequence homology with the vast background of nucleic acids from healthy cells. Recently, programmable endonucleases such as clustered regularly interspaced short palindromic repeats (CRISPR) associated protein (Cas) and prokaryotic Argonautes have been successfully used to remove background nucleic acids and enrich mutant allele fractions, enabling their detection with deep next generation sequencing (NGS). However, the enrichment level achievable with these assays is limited by futile binding events and off-target cleavage. To overcome these shortcomings, we conceived a new assay (Programmable Enzyme-Assisted Selective Exponential Amplification, PASEA) that combines the cleavage of wild type alleles with concurrent polymerase amplification. While PASEA increases the numbers of both wild type and mutant alleles, the numbers of mutant alleles increase at much greater rates, allowing PASEA to achieve an unprecedented level of selective enrichment of targeted alleles. By combining CRISPR-Cas9 based cleavage with recombinase polymerase amplification, we converted samples with 0.01% somatic mutant allele fractions (MAFs) to products with 70% MAFs in a single step within 20 min, enabling inexpensive, rapid genotyping with such as Sanger sequencers. Furthermore, PASEA's extraordinary efficiency facilitates sensitive real-time detection of somatic mutant alleles at the point of care with custom designed Exo-RPA probes. Real-time PASEA’ performance was proved equivalent to clinical amplification refractory mutation system (ARMS)-PCR and NGS when testing over hundred cancer patients’ samples. This strategy has the potential to reduce the cost and time of cancer screening and genotyping, and to enable targeted therapies in resource-limited settings.  相似文献   

7.
《Electrophoresis》2017,38(8):1163-1174
Next generation sequencing (NGS) is the emerging technology in forensic genomics laboratories. It offers higher resolution to address most problems of human identification, greater efficiency and potential ability to interrogate very challenging forensic casework samples. In this study, a trial set of DNA samples was artificially degraded by progressive aqueous hydrolysis, and analyzed together with the corresponding unmodified DNA sample and control sample 2800 M, to test the performance and reliability of the ForenSeqTM DNA Signature Prep kit using the MiSeq Sequencer (Illumina). The results of replicate tests performed on the unmodified sample (1.0 ng) and on scalar dilutions (1.0, 0.5 and 0.1 ng) of the reference sample 2800 M showed the robustness and the reliability of the NGS approach even from sub‐optimal amounts of high quality DNA. The degraded samples showed a very limited number of reads/sample, from 2.9–10.2 folds lower than the ones reported for the less concentrated 2800 M DNA dilution (0.1 ng). In addition, it was impossible to assign up to 78.2% of the genotypes in the degraded samples as the software identified the corresponding loci as “low coverage” (< 50x). Amplification artifacts such as allelic imbalances, allele drop outs and a single allele drop in were also scored in the degraded samples. However, the ForenSeqTM DNA Sequencing kit, on the Illumina MiSeq, was able to generate data which led to the correct typing of 5.1–44.8% and 10.9–58.7% of 58 of the STRs and 92 SNPs, respectively. In all trial samples, the SNP markers showed higher chances to be typed correctly compared to the STRs. This NGS approach showed very promising results in terms of ability to recover genetic information from heavily degraded DNA samples for which the conventional PCR/CE approach gave no results. The frequency of genetic mistyping was very low, reaching the value of 1.4% for only one of the degraded samples. However, these results suggest that further validation studies and a definition of interpretation criteria for NGS data are needed before implementation of this technique in forensic genetics.  相似文献   

8.
Wang J  McCord B 《Electrophoresis》2011,32(13):1631-1638
A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples.  相似文献   

9.
《Electrophoresis》2017,38(7):1007-1015
The SNPfor ID consortium identified a panel of 52 SNPs for forensic analysis that has been used by several laboratories worldwide. The original analysis of the 52 SNPs was based on a single multiplex reaction followed by two single‐base‐extension (SBE) reactions each of which was analyzed using capillary electrophoresis. The SBE assays were designed for high throughput genetic analyzers and were difficult to use on the single capillary ABI PRISM 310 Genetic Analyzer and the latest generation 3500 Genetic Analyzer, as sensitivity on the 310 was low and separation of products on the 3500 with POP‐7™ was poor. We have modified the original assay and split it into four multiplex reactions, each followed by an SBE assay. These multiplex assays were analyzed using polymer POP‐4™ on ABI 310 PRISM® and polymers POP‐4™, POP‐6™ and POP‐7™ on the 3500 Genetic Analyzer. The assays were sensitive and reproducible with input DNA as low as 60 pg using both the ABI 310 and 3500. In addition, we found that POP‐6™ was most effective with the 3500, based on the parameters that we assessed, achieving better separation of the small SBE products; this conflicted with the recommended use of POP‐7™ by the instrument manufacturer. To support the use of the SNP panel in casework in Malaysia we have created an allele frequency database from 325 individuals, representing the major population groups within Malaysia. Population and forensic parameters were estimated for all populations and its efficacy evaluated using 51 forensic samples from challenging casework.  相似文献   

10.
Whole-genome DNA amplification by multiple displacement (MD-WGA) is a promising tool to obtain sufficient DNA amounts from samples of limited quantity. Using Affymetrix' GeneChip Human Mapping 10K Arrays, we investigated the accuracy and allele amplification bias in DNA samples subjected to MD-WGA. We observed an excellent concordance (99.95%) between single-nucleotide polymorphisms (SNPs) called both in the nonamplified and the corresponding amplified DNA. This concordance was only 0.01% lower than the intra-assay reproducibility of the genotyping technique used. However, MD-WGA failed to amplify an estimated 7% of polymorphic loci. Due to the algorithm used to call genotypes, this was detected only for heterozygous loci. We achieved a 4.3-fold reduction of noncalled SNPs by combining the results from two independent MD-WGA reactions. This indicated that inter-reaction variations rather than specific chromosomal loci reduced the efficiency of MD-WGA. Consistently, we detected no regions of reduced amplification, with the exception of several SNPs located near chromosomal ends. Altogether, despite a substantial loss of polymorphic sites, MD-WGA appears to be the current method of choice to amplify genomic DNA for array-based SNP analyses. The number of nonamplified loci can be substantially reduced by amplifying each DNA sample in duplicate.  相似文献   

11.
Whole genome amplification (wga) of DNA is being widely implemented in many laboratories to extend the life of samples only available in limited quantities for genetic analysis. We determined the reliability of wgaDNA genotypes in three sets of replicates from the same individuals: (i) 23 pairs of genomic DNA (gDNA), (ii) 43 pairs gDNA versus wgaDNA, and (iii) 29 pairs of independently amplified wgaDNA. Amplification was performed using multiple displacement amplification (MDA). Genotyping was successful for both DNA types for 1268 out of 1534 SNPs from 164 cardiovascular candidate genes assayed in a single Illumina panel. Amplified DNA failed for 77 SNPs (6%) that were genotyped successfully with genomic material. Percent of successful SNP calls, and concordance between pairs and kappa statistics (kappa) were determined. A total of 54 110 genotypes from gDNA-wgaDNA pairs were available for concordance analysis. Mean kappa for gDNA-wgaDNA pairs was 0.99. Concordance between gDNA-wgaDNA pairs was higher than amongst wgaDNA pairs (mean kappa for the 29 independently amplified pairs of wgaDNA was 0.95; interquartile range: 0.93-1.00). A statistical analysis of those SNPs which failed to genotype from amplified DNA only revealed that those loci were more likely to be closer to the telomeres and in locally GC-rich sequences. In summary, the MDA method produces wgaDNA samples that can be genotyped using high-throughput technology with a very high reproducibility to the original DNA but with slightly lower call rates. DNA amplification methodologies provide a useful solution for current and future large-scale genetic analyses especially with limited quantities of samples and DNA.  相似文献   

12.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

13.
Y chromosome kits are successfully applied in cases where human biological material exists. With the development of genotyping ability, more Y chromosomal markers are needed for finer identification of male individuals and lineages. In this study, a developmental validation of a newly emerged Y chromosome kit that combines two different kinds of markers: 38 Y-STRs and 3 Y-indels are conducted. The results show that this kit has high sensitivity when there is a small amount of DNA (125 pg), more than one male (minor:major = 1:7), or a mixture of males and females (male:female = 125pg:1875pg), inhibited substances (800 μM hematin and more than 1600 ng/μL humic acid). The kit exhibits high precision level with a standard deviation of allele size no more than 0.14 nt. Locus DYS481 shows the largest stutter rate, with three stutters per true allele. Population samples are well identified (MP of 0.001106), and mutations can be observed in father–son pairs (46 mutations in 70 pairs, 10 in locus DYS627). Out of all the population samples, 13.2% belong to haplogroup M117-O2a2b1a1, with their ethnic group being Han Chinese. The results show that this kit can improve the performance of identifying male individuals, obtaining more unique haplotypes (increasing from 894 to 918 of 1000 male samples) and higher discrimination capacity (increasing from 0.942 to 0.955) in this study compared to previous widely used Yfiler Plus kit. Besides, it gives information about their paternal lineages in forensic genetic casework and genealogical database construction.  相似文献   

14.
《Electrophoresis》2017,38(8):1154-1162
Nonbinary single‐nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent‐labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.  相似文献   

15.
《Fluid Phase Equilibria》2002,193(1-2):109-121
Isothermal vapor–liquid equilibrium (VLE) data at 353.15 K and excess molar volumes (VE) at 298.15 K are reported for the binary systems of ethyl acetate (EA)+cyclohexane and EA+n-hexane and also for the ternary systems of EA+cyclohexane+2-methyl pyrazine (2MP) and EA+n-hexane+2MP. The experimental binary VLE data were correlated with common gE model equations. The correlated Wilson parameters of the constituent binary systems were used to calculate the phase behavior of the ternary mixtures. The calculated ternary VLE data using Wilson parameters were compared with experimental ternary data. The experimental excess molar volumes were correlated with the Redlich–Kister equation for the binary mixtures, and Cibulka’s equation for the ternary mixtures.  相似文献   

16.
We present a high-throughput single-strand conformation polymorphism (SSCP) method, performed on a commercially available capillary array DNA sequencer. We tested various sieving matrices and electrophoretic conditions, using 51 DNA fragments which included 45 fragments carrying only one single nucleotide polymorphism (SNP), 4 fragments having two SNPs and 2 fragments with insertion or deletion. Resolution of alleles was improved by increasing concentrations of both sieving matrices and buffers, and all examined polymorphisms of DNA fragments were detected, most of them (45 fragments) as clearly split allele peaks in heterozygotes. Allele frequencies of SNPs can be estimated accurately by determining the relative amounts of alleles in pooled DNA. In this method, the turn-around time for the analysis of 96 samples is less than 3 h. These results demonstrate that capillary array-based SSCP is an efficient and accurate technique for the large-scale quantitative analysis of mutations/polymorphisms.  相似文献   

17.
Y-chromosome, as a gender-determined biological marker, is inherited only between fathers and sons. The Y-chromosome short tandem repeats (Y-STRs) play an essential role in paternity lineage tracing as well as sexual assault cases. The Microreader Group Y Direct ID System as a six-dye multiplex amplification kit, including 53 Y-STR and one Y-Indel locus, would improve performance and aid in obtaining more information through a greater number of loci with high polymorphism. In the present study, to verify the accuracy and efficiency of the kit, developmental validation was conducted by investigating sensitivity, species specificity, PCR inhibition, male–male and male–female mixtures, and reproducibility. The kit was tested using 311 male samples from Han and Qiang populations in Sichuan Province. The results showed that this kit had fairly high power for forensic discrimination (Han: haplotype diversity [HD] = 1, Qiang: HD = 0.999944). Additionally, 44 confirmed father–son pairs were also genotyped, among which 69 distinct haplotypes could be obtained. These father–son pairs cannot be distinguished by commonly used Y-STR panels, indicating that adding these extra Y-STRs to a single panel can achieve better discrimination performance. Collectively, the Microreader Group Y Direct ID System is robust and informative for forensic applications.  相似文献   

18.
We present a newly developed software called "QSNPlite" that comprehensively interprets the data of SSCP and sequencing analyses obtained from capillary array electrophoresis systems used in the quantitative characterization of SNPs. QSNPlite assists in the genotyping of individuals with SNPs and in estimating the allele frequencies of SNPs using pooled DNA. We show that this estimation is accurate (mean absolute error, 1.4%) by comparing the results of the pooled analysis using QSNPlite with the true frequencies based on the allele counting after performing individual genotypings. The QSNPlite program runs on Windows XP and can be used to determine the allele frequencies of SNPs among a large number of individuals, such as in association studies of disease-responsible genes using the candidate gene approach.  相似文献   

19.
Current technologies have increased the sensitivity for analyzing forensic DNA samples, especially those considered “touch samples.” Because of this, there has been an increase in the number of forensic mixtures–two or more contributors within a single sample–submitted to the crime laboratories. Therefore, the need to resolve these mixtures has increased as well. Several technologies are currently utilized, but many of them are time consuming and do not resolve the entire profile. Therefore, CE‐Single‐Strand Conformational Polymorphisms coupled with the Pluronic F‐108 polymer was assessed for its ability to resolve human forensic mixtures. This technique has been able to detect sequence variation, such as single nucleotide polymorphism in short tandem repeat loci, such as D7S820 and vWA. Samples were first analyzed with the Performance Optimized Polymer‐7, and mixtures created from samples that shared alleles. These samples were sequenced to detect single base‐pair mutations and evaluated with the F‐108 and CE‐Single Strand Conformational Polymorphism analysis. Results from this study indicated the method would serve as a valuable screening tool to detect base sequence variation between individuals when they share alleles in a mixture and before using Massive Parallel Sequencing technology to distinguish which bases differ.  相似文献   

20.
Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at ∼0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcolohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biometarials for various analytical and pharmaceutical applications. Figure The electrochemical method for SNP detection using PNA probes and chitosan nanoparticles takes advantage of the significant structural and physicochemical differences between PNA/DNA and DNA/DNA duplexes. Single-stranded DNA specific enzymes selectively choose these SNP sites and hydrolyze the DNA molecules on gold electrode (AuE) surface. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号