首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Agostic interactions involving titanium are textbook examples for C−H bond activation. Therefore, it is surprising that there is no study in the literature in which the hydrogen atom in the C−H⋅⋅⋅Ti interaction has been determined reliably, although nearly all the criteria for assessing the strength and character of the agostic interaction depend on the hydrogen atom and its position. Here, we demonstrate with quantum crystallographic techniques how hydrogen atoms in a series of three titanium amides can indeed be localized accurately and precisely based on routine single-crystal X-ray diffraction data. Once the hydrogen positions have been established, theoretical and experimentally fitted bonding analyses reveal that the C−H⋅⋅⋅Ti interaction becomes stronger with increasing inter-ligand London dispersion stabilization of bulky alkyl groups.  相似文献   

2.
3.
The reactions of methyl chloride and bromide with laser‐ablated Zr and Hf atoms during deposition in excess Ne, Ar, or Kr are investigated, and the products are examined by matrix IR spectroscopy and density functional theory calculations. The methylidene complexes, [CH2?MHX] (M=Zr and Hf, X=Cl and Br), are formed along with the methyl metal halide complexes, [CH3? MX]. The amounts of both types of complexes increase upon photolysis and in the early stages of annealing. Two sets of methylidene absorptions observed in Ar and Kr matrices form a persistent photoreversible system. The most stable C1 and slightly higher energy planar structures of the methylidene complex in the singlet ground state trapped in the matrix reproduce the characteristics of the two sets of absorptions. Agostic distortion of the methylidene complexes decreases in the order Ti, Zr, Hf and increases in the order F, Cl, and Br; the C?Zr and Zr? H stretching frequencies increase, and the bonds become shorter. This observation favors the characterization of the agostic interaction as a reorganization of charge.  相似文献   

4.
The first agostic interaction in a gold complex is described. The presence of a bonding C?H???Au interaction in a cationic “tricoordinate” gold(III) complex was suggested by DFT calculations and was subsequently confirmed by NMR spectroscopy at low temperature. The agostic interaction was analyzed computationally using NBO and QTAIM analyses (NBO=natural bond orbital; QTAIM=quantum theory of atoms in molecules).  相似文献   

5.
6.
We report the first examples of metal-promoted double geminal activation of C(sp3)−H bonds of the N−CH2−N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole ( 1 ) with [PdCl2(cod)] occurred in a stepwise fashion, first by single C−H bond activation yielding the alkyl pincer complex [PdCl(PC HP)] ( 3 ) with two trans phosphane donors and a covalent Pd−C bond. Activation of the C−H bond of the resulting α-methine C H−M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHCP)]Cl ( 2 ). Treatment of 1 with [NiBr2(dme)] also afforded a NHC pincer complex, [NiBr(PCNHCP)]Br ( 6 ), but the reactions leading to the double geminal C−H bond activation of the N−CH2−N group were too fast to allow identification or isolation of an intermediate analogous to 3 . The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N−CH2−N moiety in the N−CNHC−N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.  相似文献   

7.
8.
The agostic interaction is a ubiquitous phenomenon in catalytic processes and transition-metal complexes, and hyperconjugation has been well recognized as its origin. Yet, recent studies showed that either short-range London dispersion or structural constraints could be the driving force, although proper evaluation of the role of hyperconjugation therein is needed. Herein, a simple variant of valence bond theory was employed to study a few exemplary Ti complexes with α- or β-agostic interactions and interpret the agostic effect in terms of the steric effect, hyperconjugation, and dispersion. For the complexes [MeTiCl3(dmpe)] and [MeTiCl3(dhpe)] with α-agostic interactions, hyperconjugation plays the dominant role with comparable magnitudes in both systems, but dispersion is solely responsible for the stronger agostic interaction in the former compared with the latter. For the complexes [EtTiCl3(dmpe)] and [EtTiCl3(dhpe)] with β-agostic interactions, however, hyperconjugation and dispersion play comparable roles, and the weaker steric repulsion leads to a stronger agostic effect in the former than in the latter. Thus, the present study clarifies the variable and sensitive roles of steric, hyperconjugative, and dispersion interactions in the agostic interaction.  相似文献   

9.
10.
Heterobimetallic complexes with inequivalent bridging alkyl chains are very often invoked as key intermediates in many catalytic processes, yet their interception and structural characterization are lacking. Such complexes have been prepared from reactions of the cationic cyclometalated hafnocene [CpPrCp Hf][B(C6F5)4] ( 1 ) with main group metal alkyls to afford the corresponding hetero-bridged cationic products, [CpPrCp Hf(μ-R)E(R)n][B(C6F5)4] (E=Al or Zn; R=Me, Et, or iBu). NMR and DFT studies demonstrate that both bridging alkyls establish agostic interactions with Hf, which are appreciably stronger for ethyl rather than methyl groups. Hf–Al and Hf–Zn distances are surprisingly short and only slightly longer than computed Hf–Al or Hf–Zn single bond lengths (2.80 Å). Finally, a reaction of [CpPrCp Hf(μ-Me)Zn(Me)][B(C6F5)4] with excess ZnMe2 yields an unprecedented heterotrimetallic species, [(CpPr)2Hf(μ-Me)(ZnMe)(μ3-CH2)ZnMe][B(C6F5)4], the detailed structure of which is elucidated by a combination of NMR spectroscopic methods and molecular calculations.  相似文献   

11.
The transition metal catalysed formation and cleavage of C−C bonds is of utmost importance in synthetic chemistry. While most of the existing homogeneous catalysts are mononuclear, knowledge of the behaviour of polynuclear species is much more limited. By using computational methods, here we shed light into the mechanistic details of the thermally-induced isomerization of Cp*3Ru3(μ-H)232-pentyne)(μ3-pentylidyne) ( 2 ) into Cp*3Ru3(μ-H)232-octyne)(μ3-ethylidyne) ( 3 ), a process that involves the migration of a C3 fragment between the hydrocarbyl ligands and across the plane formed by the three Ru centres. Our results show this to be a complex transformation that comprises of five individual rearrangements in an ABABA order. Each so-called rearrangement A consists of the CH migration from the μ32-alkyne into the μ3-alkylidine ligand in the other side of the Ru3 plane. This process is facilitated by the cluster's ability to adopt open-core structures in which one Ru−Ru bond is broken and a new C−C bond is formed. In contrast, rearrangements B do not involve the formation or cleavage of C−C bonds, nor do they require the opening of the cluster core. Instead, they consist of the isomerization of the μ32-alkyne and μ3-alkylidyne ligands on each side of the triruthenium plane into μ3-alkylidyne and μ32-alkyne, respectively. Such transformation implies the migration of three H atoms within the hydrocarbyl ligands, and in this case, it is aided by the cluster's ability to behave as a H reservoir. All in all, this study highlights the plasticity of these Ru3 clusters, whereby Ru−Ru, Ru−C, Ru−H, C−C, and C−H bonds are formed and broken with surprising ease.  相似文献   

12.
In recent years, the high availability of methane in the shale gas reserves has raised significant interest in its conversion to high-value chemicals but this process is still not commercially viable. Metal oxides, due to their surface heterogeneity and the presence of Lewis acidic and basic site pairs are known to facilitate the activation of C−H bonds of methane. In this work, we investigate the C−H bond activation of methane on pristine and doped γ-Al2O3 clusters using density functional theory (DFT) calculations. Our results demonstrate that the polar pathway is energetically preferred over the radical pathway on these systems. We found that the metal dopants (boron and gallium) not only alter the catalytic activity of dopant sites but this effect is more pronounced on some of the adjacent sites (non-local). Among the selected dopants, gallium greatly improves the catalytic activity on most of the site pairs (including most active and least active) of pristine γ-Al2O3. Additionally, we identified a correlation between H2 binding energies and the C−H activation free energies on Ga-doped γ-Al2O3.  相似文献   

13.
The π–π interactions between benzene and the aromatic nitrogen heterocycles pyridine, pyrimidine, 1,3,5‐triazine, 1,2,3‐triazine, 1,2,4,5‐tetrazine, and 1,2,3,4,5‐pentazine are systematically investigated. The T‐shaped structures of all complexes studied exhibit a contraction of the C? H bond accompanied by a rather large blue shift (40–52 cm?1) of its stretching frequency, and they are almost isoenergetic with the corresponding displaced‐parallel structures at reliable levels of theory. With increasing number of nitrogen atoms in the heterocycle, the geometries, frequencies, energies, percentage of s character at C, and the electron density in the C? H σ antibonding orbital of the complexes all increase or decrease systematically. Decomposition analysis of the total binding energy showed that for all the complexes, the dispersion energy is the dominant attractive contribution, and a rather large attraction originating from electrostatic contribution is compensated by its exchange counterpart.  相似文献   

14.
Mononuclear nonheme MnIV?O complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The MnIV?O complexes show reactivity in oxidation reactions (hydrogen‐atom abstraction and sulfoxidation). Interestingly, one of the isomers (L1) is significantly more reactive than the other (L2), while in the corresponding FeIV?O based oxidation reactions the L2‐based system was previously found to be more reactive than the L1‐based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.  相似文献   

15.
The hydroxylation of nonreactive C−H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge. Herein, we use a multi-scale modeling approach to investigate the selectivity of testosterone (TES) and dihydrotestosterone (DHT) hydroxylation catalyzed by two important P450s, CYP3A4 and CYP19A1. For CYP3A4, two distinct binding modes for TES/DHT were predicted by dockings and molecular dynamics simulations, in which the experimentally identified sites of metabolism of TES/DHT can access to the catalytic center. The regio- and stereoselectivities of TES/DHT hydroxylation were further evaluated by quantum mechanical and ONIOM calculations. For CYP19A1, we found that sites 1β, 2β and 19 can access the catalytic center, with the intrinsic reactivity 2β>1β>19. However, our ONIOM calculations indicate that the hydroxylation is favored at site 19 for both TES and DHT, which is consistent with the experiments and reflects the importance of the catalytic environment in determining the selectivity. Our study unravels the mechanism underlying the selectivity of TES/DHT hydroxylation mediated by CYP3A4 and CYP19A1 and is helpful for understanding the selectivity of other substrates that are hydroxylated by P450s.  相似文献   

16.
The stability of weak fluorine bonds in homogeneous catalyst is studied at the ab initio level for an arylpyridine post‐metallocene complex. The Ti···F···Hβ interaction scheme, involving the agostic bond with titanium and the H‐bond with an Hβ in the growing chain, is found to be the the most stable one. A possible optimal overlap involving the fluorine lone pairs is proposed. This three‐center interaction could play a role in the inhibition of Hβ transfer to the metal or to the monomer in the termination reactions.

  相似文献   


17.
Group 9 metals, in particular RhIII complexes with cyclopentadienyl ligands, are competent C−H activation catalysts. Recently, a Cp*RhIII-catalyzed reaction of alkenes with N-enoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2-trifluoroethanol (TFE). Here, we create selectivity and activity maps capable of unravelling the catalyst-solvent interplay on the outcome of these competing reactions by analyzing 42 cyclopentadienyl metal catalysts, CpXMIII (M=Co, Rh, Ir). These maps not only can be used to rationalize previously reported experimental results, but also capably predict the behavior of untested catalyst/solvent combinations as well as aid in identifying experimental protocols that simultaneously optimize both catalytic activity and selectivity (solutions in the Pareto front). In this regard, we demonstrate how and why the experimentally employed Cp*RhIII catalyst represents an ideal choice to invoke a solvent-induced change in reactivity. Additionally, the maps reveal the degree to which even perceived minor changes in the solvent (e. g., replacing methanol with ethanol) influence the ratio of carboamination and cyclopropanation products. Overall, the selectivity and activity maps presented here provide a generalizable tool to create global pictures of anticipated reaction outcome that can be used to develop new experimental protocols spanning metal, ligand, and solvent space.  相似文献   

18.
19.
The structures of hydrazinium dinitramide (HDN) in the gas phase and in aqueous solution have been studied at different levels of theory by using quantum chemistry. The intramolecular hydrogen‐bond interactions in HDN were studied by employing the quantum theory of atoms in molecules (QTAIM), as well as those in ammonium dinitramide (ADN), hydrazinium nitroformate (HNF), and ammonium nitroformate (ANF) for comparison. The results showed that HDN possessed the strongest hydrogen bonds, with the largest hydrogen‐bond energy (?47.95 kJ mol?1) and the largest total hydrogen‐bond energy (?60.29 kJ mol?1). In addition, the charge transfer between the cation and the anion, the binding energy, the energy difference between the frontier orbitals, and the second‐order perturbation energy of HDN were all the largest among the investigated compounds. These strongest intramolecular interactions accounted for the highest decomposition temperature of HDN among all four compounds. The IR spectra in the gas phase and in aqueous solution were very different and showed the significant influence of the solvent. The UV spectrum showed the strongest absorption at about 253 nm. An orbital‐interaction diagram demonstrated that the transition of electrons mainly happened inside the anion of HDN. The detonation velocity (D=8.34 km s?1) and detonation pressure (P=30.18 GPa) of HDN were both higher than those of ADN (D=7.55 km s?1 and P=24.83 GPa). The composite explosive HDN/CL‐20 with the weight ratio wCL?20/wHDN=0.388:0.612 showed the best performance (D=9.36 km s?1, P=39.82 GPa), which was close to that of CL‐20 (D=9.73 km s?1, P=45.19 GPa) and slightly better than that of the composite explosive ADN/CL‐20 (wCL?20/wADN=0.298:0.702, D=9.34 km s?1, P=39.63 GPa).  相似文献   

20.
The ability of tetrahedral lead(IV) to establish noncovalent σ-hole tetrel bonding interactions with electron-rich atoms (ElRs; anions and Lewis bases) has been studied at the PBE0-D3/def2-TZVPD level of theory. An analysis of the Cambridge Crystallographic Database (CSD), which is a convenient storehouse of geometric information, has been performed to investigate the existence of tetrel bonding interactions involving tetrahedral lead(IV) derivatives. Several examples of tetrel bonding interactions that are crucial in crystal packing, ranging from 0D to 2D assemblies, have been found. In addition to the energetic and theoretical study of several XPb(CH3)3⋅⋅⋅ElR complexes (X=F, CN, CF3, and CH3), Bader's theory of atoms in molecules has also been used to further analyze and characterize the noncovalent interactions described herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号