首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is important to develop high performances biodegradable polymers to eliminate the “white pollution” evoked by petroleum‐based polymer. Thermoplastic starch (TPS) with nano‐ellipse configuration was fabricated to reinforce the performances of poly (butylene adipate co‐terephthalate) (PBAT) biocomposites. Effects of tartaric acid (TA) (0.5% wt) on the structure of TPS and compatibility for PBAT were evaluated by Fourier‐transform infrared spectroscopy (FTIR), viscosity and rheological measurement, dynamic mechanical analysis (DMA) and scanning electron microscope (SEM), respectively. They revealed that TA reduced the molecular weight of starch and shear viscosity of TPS were beneficial for TPS dispersing in PBAT matrix with 184‐nm averaged diameter. PBAT/TPS‐TA (70:30 wt%) biocomposite films were blew with different blow‐up ratio. The morphology of films presented that nano‐TPS‐TA wrapped in the PBAT matrix and deformed from ball to capsule feature without agglomeration. Compared with those of PBAT film, the increment in elongation at break of PBAT/TPS‐TA film was 100%. The air permeability and UV‐VIS transmittance of PBAT/TPS‐TA films decreased from 6.92 × 10?9 to 3.72 × 10?9 cm3·cm·cm?2 s?1 Pa?1 and 47.6% to 23.5%, respectively. This study proposed a facile approach to fabricate low‐cost PBAT films with significant improved mechanical, optical, and air barrier properties for commercial application. Mechanism for nanoparticles of TPS‐TA motivated the elevated performances was proposed, synchronously.  相似文献   

2.
《先进技术聚合物》2018,29(1):61-68
Bio‐based nanocomposites of poly (butylene adipate‐co‐terephthalate) (PBAT)/silver oxide (Ag2O) were prepared by the composite film casting method using chloroform as the solvent. The prepared Ag2O at different ratios (1, 3, 5, 7, and 10 wt%) is incorporated in the PBAT. The PBAT nanocomposite films were subjected to structural, thermal, mechanical, barrier, and antimicrobial properties. The electron micrographs indicated uniform distribution of Ag2O in the PBAT matrix. However, the images indicated agglomeration of Ag2O particles at 10 wt% loading. The thermal stability of the nanocomposite films increased with Ag2O content. The tensile strength and elongation of the composite films were found to be higher than those of PBAT and increased with Ag2O content up to 7 wt%. The PBAT‐based nanocomposite films showed the lower oxygen and water vapor permeability when compared to the PBAT film. Antimicrobial studies were performed against two food pathogenic bacteria, namely, Klebsiella pneumonia and Staphylococcus aureus.  相似文献   

3.
The aim of this investigation is to obtain a polymer-based hybrid material with biodegradability, biocompatibility, and good mechanical properties and this object was realized via. in-situ introduction of the unmodified calcium carbonate (CaCO3) into a poly(l-lactic acid) (PLLA) matrix. As verified by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), the hybrid films which possesses a uniform dispersion of calcium carbonate CaCO3 in nano-meter scale, mechanically robustness and thermal stability could be fabricated by a mineralization-alike process. For example, the storage modulus increases from 441 MPa of neat PLLA to 1034 MPa of hybrid film containing 2% (w/w) CaCO3. In addition, the hybrid films display a significant improvement in its UV-exposure resistance.  相似文献   

4.

The primary objective of this study is to evaluate the thermal stability of the active films with the cellulose nanostructure (CNS, 5?mass%) treated with encapsulated essential oils (EOs), eugenol and linalool. CNS untreated and treated were incorporated in the poly(butylene adipate-co-terephthalate) (PBAT) polymer matrix prepared by casting. In this study, all samples were characterized by FTIR, DRX, TG, DSC and SEM, elucidating the contribution of each component in the final films. CNS untreated and treated with EOs were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis (TGA), confirming the interaction between these components. The active biofilms were analyzed by TGA and DSC analyses (differential scanning calorimetry), confirming that their thermal stability was maintained similar to the neat PBAT film, without loss of properties. The CI (crystallinity index, %) of the polymeric films was calculated from heat fusion (ΔH) values, indicating that the incorporation of the nanostructures into the PBAT matrix increases the crystallinity of the biofilms, from 11.5 (neat PBAT) to 13.8% (PBAT/CNS-E), acting as a nucleating agent in the polymeric matrix. The presence of the EOs did not decrease the CNS stability, as well of the biocomposite films. Moreover, the thermal analysis confirmed that the EO was well involved by the CNS, before and after the incorporation in the PBAT polymer, as observed in the SEM images.

  相似文献   

5.
In this present study, biodegradable PBAT nanocomposites containing different weight percentages (1, 3, 5, 7, and 10% w/w) of TiO2 nanoparticles were prepared by using solvent casting technique, chloroform as a solvent. The microstructure and morphology of the as‐synthesized poly(butylene adipate‐co‐terephthalate) (PBAT)/TiO2 nanocomposite films were characterized by Fourier‐transform infrared, X‐ray diffraction, scanning electron microscopy, and transmission electron microscope. The thermal degradation of PBAT composites was studied by using thermogravimetric analysis. The mechanical strength of the films was improved by increasing TiO2 concentration. Tensile strength increased from 32.60 to 63.26 MPa, respectively. Barrier properties of the PBAT/TiO2 nanocomposites were investigated by using an oxygen permeability tester. The oxygen permeability (oxygen transmission rate) decreased with increasing the TiO2 nanoparticle concentrations. The PBAT/TiO2 nanocomposite films showed profound antimicrobial activity against both Gram‐positive and Gram‐negative foodborne pathogenic bacteria, namely, Escherichia coli and Staphylococcus aureus, to understand to the zone of inhibition. These results indicated that filler–polymer interaction is important and the role of the TiO2 as a reinforcement in the nanocomposites was evident. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
《先进技术聚合物》2018,29(6):1706-1717
Biodegradable poly(lactic acid) (PLA)/poly(butylene adipate‐co‐terephthalate) (PBAT) blends and films were prepared using melt blending and blowing films technique in the presence of chain extender‐Joncryl ADR 4370F. The ADR contains epoxy functional groups and used as a compatibilizer. The morphological, mechanical, rheological, thermal, and crystalline properties of the PLA/PBAT/ADR blown films were studied. Scanning electron microscopy micrographs of the films revealed more ductile deformation with increasing PBAT content. The addition of PBAT enhanced the toughness of the PLA film. Tensile tests indicated that the elongation at break increased from 20.5% to 334.6% in the machine direction and from 7.1% to 715.9% in the transverse direction. The Young modulus increased from 2690.5 to 395.6 MPa in the machine direction and from 2623.5 to 154.0 MPa in the transverse direction. The sealing strength of 40/60/0.15 PLA/PBAT/ADR film was the highest among all the samples up to 9.4 N 15 mm−1. These findings gave important implications for designing and manufacturing polymer packaging materials.  相似文献   

7.
《先进技术聚合物》2018,29(4):1344-1356
Three nanocomposite films based on aramid (poly (ether‐amide), PEA) and multiwall carbon nanotubes (MWCNT) were prepared via solution casting method using 2,7‐bis(4‐aminophenoxy)naphthalene (4) and isophthalic acid (5) containing various amounts of MWCNT (2, 3, 5 wt.%). To comprehensively analyze the properties of the cast films as well as the monomers, different techniques were employed, namely FT‐IR, 1H NMR, X‐ray diffraction, and field emission scanning electron microscopy. Also, thermal and tensile properties of PEA (6) and nanocomposite films were investigated using thermogravimetric analysis and mechanical analysis, respectively. The morphology, thermal, and mechanical properties of nanocomposite films approved that MWCNT had well dispersion in the PEA matrix and showed a synergistic effect on improving all of the investigated properties. Based on the thermogravimetric analysis results, employing MWCNT caused to increase in the char yields from 61 (in the neat PEA) to 66 (in the PEA /MWCNT nanocomposite 5 wt.%) under the nitrogen atmosphere. In comparison to the pristine PEA (426°C), the temperature at 10 losses mass % (T10) was increased from 530°C to 576°C, with 2 to 5 wt.% of MWCNT. Mechanical analysis revealed that the tensile strength and initial modulus were improved by incorporating MWCNT into PEA (81.70–93.40 MPa and 2.10–2.22 GPa, respectively). Electrical conductivity of the PEA/MWCNT nanocomposites was displayed maximum value in the 5 wt.%, showing satisfactory value in many application areas. The X‐ray diffraction technique was employed to study the crystalline structure of the prepared nanocomposite films as well as PEA. In addition, the electrochemical impedance spectroscopy study demonstrated that the prepared nanocomposites had significant impedance improvement in the presence of MWCNTs.  相似文献   

8.
Novel blends were prepared from biobased poly(trimethylene terephthalate) (PTT) and poly(butylene adipate‐co‐terephthalate) (PBAT) using a twin screw extrusion process as a function of different weight ratios. Thermal stability, mechanical, and interfacial properties of PTT/PBAT blends were investigated using a thermogravimetric analyzer and mechanical analyzer. Phase behavior and surface morphology of the blends were characterized using scanning electron microscopy. Interfacial bonding value of the PTT/PBAT blend was evaluated from the Pukanszky empirical relationship. Viscoelastic properties of PTT/PBAT blends were investigated using the dynamic mechanical analyzer. PTT/PBAT blend exhibited higher thermal stability than the neat PTT matrix. The entire blend showed better interfacial adhesion between the matrixes. Storage and loss modulus of the PTT/PBAT blend reduces with increasing PBAT content. PTT/PBAT blend exhibited higher impact energy than the neat PTT matrix, because of its flexible and amorphous nature of PBAT polymer and increasing toughness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Rare earth europium(III) complex with α‐thenoyltrifluoroacetone and triphenylphosphine oxide (Eu (TTA)3(TPPO)2, shortened as EuTT) was synthesized in this paper, then blended with polylactide (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) to prepare the biodegradable agricultural films. Through the optical performance, mechanical properties, and other research, the results showed that the rare earth complex could convert the sun's ultraviolet light to red light when doped polymer. Moreover, the relative intensity ratio of 5D0/7F2 to 5D0/7F1 of PLA/PBAT/EuTT film could reach 3.79, which implied that the film had strong fluorescence intensity and high color purity. The highest tensile strength of the film could reach 36.7/25.2 MPa, and the elongation at break was 462.8/483.0% in the machine and in the transverse direction when the added amount of Eu (TTA)3(TPPO)2 was 0.1 wt%. The tensile strength of the film was 33.3/20.1 MPa, and the elongation at break could reach 535.8/413.6% when the added amount of Eu (TTA)3(TPPO)2 was increased up to 0.3 wt%. Gel permeation chromatography showed that the Eu (TTA)3(TPPO)2 could cause depolymerization of polylactide, resulting in a decrease in the molecular weight of PLA. Furthermore, the crystallization ability of PLA was also improved. In this paper, the biodegradable films exhibited excellent ultraviolet light conversion ability and mechanical properties.  相似文献   

10.
Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying concentrations. Small amounts of PF slightly enhanced the tensile properties of CNF films. The formulation with the best mechanical properties was CNF/PF films with 8 wt % resin exhibiting tensile stress and toughness of 248 MPa and 26 MJ/m3, respectively. Resin concentrations higher than about 8 % resulted in composites with decreased tensile properties as compared to neat CNF films. The wet strength of the composite films was significantly higher than that of the neat CNF films. The resulting composites showed greater resistance to moisture absorption accompanied by reduced thickness swelling when soaked in water as compared to neat CNF films. The composites also showed decreased oxygen permeability at low humidity compared to neat films, but the composites did not show improved barrier properties at high humidity.  相似文献   

11.
A new phosphorus‐based organic additive (PDA) was designed and successfully synthesized using a three‐component reaction for improvement of the thermal and combustion resistance of polylactic acid (PLA). For compensate for mechanical properties of PLA, hydroxyapatite nanoparticles was modified via in situ surface modification with PDA and was used for preparation of PLA nanocomposites. The structure and morphology as well as thermal, combustion, and mechanical properties of the all PLA systems were investigated. The X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FE‐SEM) results indicated that the presence of PDA as surface modifier has been necessary for a desirable dispersion of hydroxyapatite (HA) nanoparticles in the PLA matrix. The thermal, combustion, and mechanical properties of the PLA system films were investigated using thermogravimetric analysis (TGA), microscale combustion calorimeter (MCC), and tensile test, respectively. The initial decomposition temperature and char residue of PLA containing 6 mass% of PDA along with 2 mass% HA nanoparticles were increased 20°C and 12% respectively, compared with that of the neat PLA. The peak of heat release rate was decreased from 566 W/g for the neat PLA to 412 W/g for PLA containing 2 mass% of PDA along with 6 mass% HA nanoparticles. By incorporation of only 2 mass% HA nanoparticles and 6 mass% of PDA, the tensile strength was obtained 51 MPa higher than that of the neat PLA.  相似文献   

12.

Oceans and soils have been contaminated with traditional plastic due to its lack of degradability. Therefore, green biopolymer composites reinforced with cellulose nanocrystal-zinc oxide hybrids (ZnO hybrids) with good biodegradation ability provided a positive impact on reducing environmental challenges. In this work, the effect of various morphologies of ZnO hybrids on the biodegradation ability of poly(butylene adipate-co-terephthalate), PBAT) under seawater, soil burial, and UV aging conditions were investigated. Sheet-like ZnO hybrids (s-ZnO hybrid) efficiently enhanced the mechanical, UV-blocking properties and biodegradation ability of PBAT nanocomposite films. Compared to neat PBAT, the best tensile strength of PBAT nanocomposite with 2 wt% s-ZnO hybrid was increased by 15.1%, meanwhile this nanocomposite films showed the highest biodegradation rate after 80 days of soil degradation and 90 days of seawater degradation. Besides, three possible biodegradation mechanisms of green PBAT nanocomposite films were presented, hinting that such PBAT nanocomposite have great promising packaging applications.

Graphic abstract
  相似文献   

13.
Packaging of foods in high barrier materials is essential to attain food safety. Nanocomposite technology is leading in search of the earlier said kind of packaging materials. The role of zinc oxide (ZnO) loadings on poly(butylene adipate‐co‐terephthalate) (PBAT) structure were investigated, in addition to that packaging properties such as barrier, thermal, and mechanical properties were studied. Antimicrobial films are developed based on PBAT and ZnO nanoparticles. The nanocomposites exhibits a significant increase in the mechanical and thermal stability. The resulting PBAT/ZnO nanofilms show superior antimicrobial activity against Escherichia coli and Staphylococcus aureus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A new dicarboxylic acid modified Mg‐Al LDH (DLDH) containing imide groups was prepared and its effects on the thermal and mechanical properties of the new synthesized aliphatic‐aromatic poly (amide‐imide) (PAI) were investigated via preparation of PAI/nanocomposite films by solution casting method. The results of X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM) showed a uniform dispersion for LDH layers into the PAI matrix. For comparison, the effects of polyacrylic acid‐co‐poly‐2‐acrylamido‐ 2‐methylpropanesulfonic acid (PAMPS‐co‐PAA) modified Mg‐Al LDH (ALDH) on the PAI properties were also studied. The thermogravimetric analysis (TGA) results exhibited that the temperature at 5 mass% loss (T5) increased from 277 °C to 310 °C for nanocomposite containing 2 mass% of DLDH, while T5 for nanocomposite containing 2 mass% of ALDH increased to 320 °C, along with the more enhancement of char residue compared to the neat PAI. According to the tensile test results, with 5 mass% DLDH loading in the PAI matrix, the tensile strength increased from 51.6 to 70.8 MPa along with an increase in Young's modulus. Also the Young's modulus of PAI nanocomposite containing 5 mass% ALDH reduced from 1.95 to 0.81 GPa.  相似文献   

15.
The interfacial tension of biodegradable melt-mixed blends of poly(butylene adipate-co-terephthalate), PBAT, and poly(ethylene-co-vinyl alcohol), (EVOH), was measured by breaking thread (BT), imbedded fiber retraction (IFR), and rheological methods. The PBAT-rich blends were prepared under different melt mixing conditions in order to investigate the effect of mixing conditions and possibility of reactive mixing between the blend components on the blend morphology, rheology, mechanical properties and interfacial tension values. The conditions were varied based on a Taguchi design of experiment using four factors namely EVOH content (0–30 wt%), mixing time (2–15 min), rotor speed (50–90 rpm), and mixing temperature (185–200 °C), each varying at three levels. The average size of EVOH droplets in PBAT matrix was determined for each blend by a field emission-scanning electron microscopy technique. The values of interfacial tension of PBAT/EVOH were found to be 2.57 ± 0.22 and 2.73 ± 0.30 mN m−1 by the BT and IFR methods, respectively. The Palierne, Gramespacher, and Bousmina models were fitted to the rheological data to verify the interfacial tension of the blends. The continuous relaxation spectrum of the blends was determined in order to obtain the relaxation time of the EVOH droplets in the PBAT matrix. The Taguchi analysis revealed that the most effective factor is the EVOH content, and other factors do not play a significant role in the ultimate properties of the blends. Finally, based on the obtained mechanical properties, the possibility of reactive mixing under the applied mixing conditions was ruled out by means of repeated differential scanning calorimetry (DSC) and rheological measurements.  相似文献   

16.
In this work we report the performance of permeation barriers based on organic/inorganic multilayer stacks. We have used PMMA-SiO2 (poly methyl methacrylate-silica) hybrid films synthesized through a sol–gel route as organic–inorganic components, whereas Al2O3 thin films were used as the inorganic component. The hybrid layers were deposited by dip coating and the Al2O3 by atomic layer deposition (ALD), films were prepared on polyethylene naphthalene (PEN) substrates. The permeability of the films and stacks is evaluated using helium as the diffusion gas in a custom made ultra-high vacuum system. The results show that permeability for PEN is reduced from 5 × 10−3 g/m2-day to about 9 × 10−5 g/m2-day for the best multiple barrier evaluated. Increased barrier properties are due to the increasing in the path and hence the lag-time of the permeating gas. In particular, we report the surface roughness of the different layers and its impact on the barrier performance. The hybrid layers reduced notably the roughness of the bare PEN substrate improving the quality of the Al2O3 layer in the barrier. The optical transmittance of the barriers in the visible region is higher than 80% in all the studied cases.  相似文献   

17.
Polypropylene (PP) nanocomposites containing cellulose nanomaterials have been studied for the last decade, but are still challenging due to the lack of affinity between PP and cellulose nanofiber (CNF), and the uneven dispersion of CNF in the PP matrix. In order to achieve the uniform dispersion of CNF in the PP matrix and improve affinity between PP and CNF, plasma-treated PP/aCNF nanocomposites were prepared by adding an alkaline CNF (aCNF) suspension to the nitrogen (N2) and oxygen (O2) plasma-treated PP. Based on the results of various analyses, the N2 plasma-treated PP (npPP)/aCNF nanocomposite showed the best performance in tensile and oxygen barrier properties. The npPP/aCNF nanocomposite increased 32.8 and 26.3% in yield stress and Young's modulus, respectively, compared with neat PP, also in O2 permeability, it showed a value of 94.31 cc-mm/m2-day-atm and showed a statistically significant decrease in contrast to neat PP. The npPP/aCNF nanocomposite has a great feasibility to be applied in various barrier packaging applications.  相似文献   

18.
Cast films of liquid crystalline polymer (LCP) and low density polyethylene (LDPE) blends have been produced and investigated. Effects of LCP content and processing parameters, i.e., processing temperature profile, screw speed, and post-die drawing, on morphology and O2 barrier property are presented. Increasing processing temperature and LCP content tend to enhance aspect ratios (L/D) of the LCP dispersed phase and at the same time influencing LCP structure. These effects are clearly observed when LCP content is increased from 10 % to 30 % by wt. At high temperature profiles, LCP morphologies are presented in a more or less ‘ribbon’ or ‘tape’ like structure together with a common LCP fibrillar structure. Films of 10% and 30% LCP produced at two optimum temperature profiles show a noticeable proportion of LCP tape-like structure and interestingly high barrier properties of ∼1.6 and 5.5 times that of the neat LDPE films. High barrier characteristics of such LCP/PE blend films are indicated by low oxygen transmission rate values. Apart from processing temperature effect, increases of screw speed result in films having smaller aspect ratios for both LCP fibers and ribbons; films also exhibit poorer barrier and mechanical properties. However, post-die drawing clearly demonstrates a positive effect in improving aspect ratios of the LCP domains and the resulting films' moduli. Effects of post-die drawing on enhancing films' barrier properties become more pronounced at high LCP content. By comparing with the neat LDPE film (30 μm thick) having modulus of ∼180 MPa and OTR of ∼11000 cc/m2.day, the developed LCP/PE films containing 30 wt% LCP show remarkably high modulus values of ∼1100 MPa with low OTR of ∼2000 cc/m2.day.  相似文献   

19.
In this study, nanocomposite poly(lactic acid) and poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared through polymer blending in the presence of multi-functional epoxy as a compatibilizer that could react with epoxy group and terminated end group of two phases to increase interfacial adhesion between PLA and PBAT and improve the toughness of PLA. The effects of porous clay heterostructure from mixed CTAB:CTAC surfactant in the mole ratio of 1:2 (B1C2-PCH) were also investigated. The elongation at break of the blends reached 38%, which was eight times that of neat PLA. The cryo-fractured surface demonstrated the interfacial adhesion caused by the interaction of the epoxy group of the reactive compatibilizer with the terminal carboxyl and hydroxyl groups of PLA and PBAT. Moreover, PBAT reduced the crystallization rate and percent crystallinity of the PLA matrix and further decreased when compatibilizer was used. Alternatively, B1C2-PCH accelerated the heterogeneous nucleation and crystallization of the nanocomposite films. After adding small amount of B1C2-PCH, the nanocomposite films demonstrated excellent dielectric properties. Therefore, the improvement of PLA/PBAT nanocomposite blends are capable to be further developed as polymeric capacitor films.  相似文献   

20.
Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号