首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon-carbon nanocomposite materials are widely adopted in the anode of lithium-ion batteries (LIB). However, the lithium ion (Li+) transportation is hampered due to the significant accumulation of silicon nanoparticles (Si) and the change in their volume, which leads to decreased battery performance. In an attempt to optimize the electrode structure, we report on a self-assembly synthesis of silicon nanoparticles@nitrogen-doped reduced graphene oxide/carbon nanofiber (Si@N-doped rGO/CNF) composites as potential high-performance anodes for LIB through electrostatic attraction. A large number of vacancies or defects on the graphite plane are generated by N atoms, thus providing transmission channels for Li+ and improving the conductivity of the electrode. CNF can maintain the stability of the electrode structure and prevent Si from falling off the electrode. The three-dimensional composite structure of Si, N-doped rGO, and CNF can effectively buffer the volume changes of Si, form a stable solid electrolyte interface (SEI), and shorten the transmission distance of Li+ and the electrons, while also providing high conductivity and mechanical stability to the electrode. The Si@N-doped rGO/CNF electrode outperforms the Si@N-doped rGO and Si/rGO/CNF electrodes in cycle performance and rate capability, with a reversible specific capacity reaching 1276.8 mAh/g after 100 cycles and a Coulomb efficiency of 99%.  相似文献   

2.
Lithium-ion batteries are commonly used for electrical energy storage in portable devices and are promising systems for large-scale energy storage. However, their application is still limited due to electrode degradation and stability issues. To enhance the fundamental understanding of electrode degradation, we report on the Raman spectroscopic characterization of LiCoO2 cathode materials of working Li-ion batteries. To facilitate the spectroscopic analysis of the solid electrolyte interface (SEI), we apply in situ surface-enhanced Raman spectroscopy under battery working conditions by using Au nanoparticles coated with a thin SiO2 layer (Au@SiO2). We observe a surface-enhanced Raman signal of Li2CO3 at 1090 cm−1 during electrochemical cycling as an intermediate. Its formation/decomposition highlights the role of Li2CO3 as a component of the SEI on LiCoO2 composite cathodes. Our results demonstrate the potential of Raman spectroscopy to monitor electrode/electrolyte interfaces of lithium-ion batteries under working conditions thus allowing relations between electrochemical performance and structural changes to be established.  相似文献   

3.
Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g−1 at 0.1 A g−1 and good rate performance (335.4 mAh g−1 at 1 A g−1). Moreover, a reversible specific capacity of 205.2 mAh g−1 at 0.05 A g−1 could be obtained as an anode material for SIBs.  相似文献   

4.
In this work we aim towards the molecular understanding of the solid electrolyte interphase (SEI) formation at the electrode electrolyte interface (EEI). Herein, we investigated the interaction between the battery-relevant ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI), Li and a Co3O4(111) thin film model anode grown on Ir(100) as a model study of the SEI formation in Li-ion batteries (LIBs). We employed mostly X-ray photoelectron spectroscopy (XPS) in combination with dispersion-corrected density functional theory calculations (DFT-D3). If the surface is pre-covered by BMP-TFSI species (model electrolyte), post-deposition of Li (Li+ ion shuttle) reveals thermodynamically favorable TFSI decomposition products such as LiCN, Li2NSO2CF3, LiF, Li2S, Li2O2, Li2O, but also kinetic products like Li2NCH3C4H9 or LiNCH3C4H9 of BMP. Simultaneously, Li adsorption and/or lithiation of Co3O4(111) to LinCo3O4 takes place due to insertion via step edges or defects; a partial transformation to CoO cannot be excluded. Formation of Co0 could not be observed in the experiment indicating that surface reaction products and inserted/adsorbed Li at the step edges may inhibit or slow down further Li diffusion into the bulk. This study provides detailed insights of the SEI formation at the EEI, which might be crucial for the improvement of future batteries.  相似文献   

5.
Recently, carboxylate metal‐organic framework (MOF) materials were reported to perform well as anode materials for lithium‐ion batteries (LIBs); however, the presumed lithium storage mechanism of MOFs is controversial. To gain insight into the mechanism of MOFs as anode materials for LIBs, a self‐supported Cu‐TCNQ (TCNQ: 7,7,8,8‐tetracyanoquinodimethane) film was fabricated via an in situ redox routine, and directly used as electrode for LIBs. The first discharge and charge specific capacities of the self‐supported Cu‐TCNQ electrode are 373.4 and 219.4 mAh g?1, respectively. After 500 cycles, the reversible specific capacity of Cu‐TCNQ reaches 280.9 mAh g?1 at a current density of 100 mA g?1. Mutually validated data reveal that the high capacity is ascribed to the multiple‐electron redox conversion of both metal ions and ligands, as well as the reversible insertion and desertion of Li+ ions into the benzene rings of ligands. This work raises the expectation for MOFs as electrode materials of LIBs by utilizing multiple active sites and provides new clues for designing improved electrode materials for LIBs.  相似文献   

6.
7.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

8.
Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV-GDY-FO) as anode materials. The goal is to motivate lithium-ion batteries (LIBs) toward ultra-high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium-ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium-ion storage. The optimized electrode IV-GDY-FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.  相似文献   

9.
The solid-electrolyte interphase (SEI) is key to stable, high voltage lithium-ion batteries (LIBs) as a protective barrier that prevents electrolyte decomposition. The SEI is thought to play a similar role in highly concentrated water-in-salt electrolytes (WISEs) for emerging aqueous batteries, but its properties remain unknown. In this work, we utilized advanced scanning electrochemical microscopy (SECM) and operando electrochemical mass spectrometry (OEMS) techniques to gain deeper insight into the SEI that occurs within highly concentrated WISEs. As a model, we focus on a 55 mol/kg K(FSA)0.6(OTf)0.4 electrolyte and a 3,4,9,10-perylenetetracarboxylic diimide negative electrode. For the first time, our work showed distinctly passivating structures with slow apparent electron transfer rates alike to the SEI found in LIBs. In situ analyses indicated stable passivating structures when PTCDI was stepped to low potentials (≈−1.3 V vs. Ag/AgCl). However, the observed SEI was discontinuous at the surface and H2 evolution occurred as the electrode reached more extreme potentials. OEMS measurements further confirmed a shift in the evolution of detectable H2 from −0.9 V to <−1.4 V vs. Ag/AgCl when changing from dilute to concentrated electrolytes. In all, our work shows a combined approach of traditional battery measurements with in situ analyses for improving characterization of other unknown SEI structures.  相似文献   

10.
Rechargeable lithium-ion batteries (LIBs) dominate the energy market, from electronic devices to electric vehicles, but pursuing greater energy density remains challenging owing to the limited electrode capacity. Although increasing the cut-off voltage of LIBs (>4.4 V vs. Li/Li+) can enhance the energy density, the aggravated electrolyte decomposition always leads to a severe capacity fading and/or expiry of the battery. Herein, a new durable electrolyte is reported for high-voltage LIBs. The designed electrolyte is composed of mixed linear alkyl carbonate solvent with certain cyclic carbonate additives, in which use of the ethylene carbonate (EC) co-solvent was successfully avoided to suppress the electrolyte decomposition. As a result, an extremely high cycling stability, rate capability, and high-temperature storage performance were demonstrated in the case of a graphite|LiNi0.6Co0.2Mn0.2O2 (NCM622) battery at 4.45 V when this electrolyte was used. The good compatibility of the electrolyte with the graphite anode and the mitigated structural degradation of the NCM622 cathode are responsible for the high performance at high potentials above 4.4 V. This work presents a promising application of high-voltage electrolytes for pursuing high energy LIBs and provides a straightforward guide to study the electrodes/electrolyte interface for higher stability.  相似文献   

11.
2-(Pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole was reported as a bifunctional electrolyte additive for lithium-ion batteries. It was found that the reported additive had a redox potential of 4.43 V vs. Li+/Li with a reversible oxidation/reduction reaction. Therefore, it is a promising redox shuttle for overcharge protection of most positive electrode materials for current lithium-ion-battery technology. At the same time, the boron center of this additive is a strong Lewis acid and can act as an anion receptor to dissolve LiF generated during the operation of lithium-ion batteries. The possibility of using the novel additive as both the redox shuttle and the anion receptor was discussed.  相似文献   

12.
Electrolyte design has become ever more important to enhance the performance of lithium-ion batteries (LIBs). However, the flammability issue and high reactivity of the conventional electrolytes remain a major problem, especially when the LIBs are operated at high voltage and extreme temperatures. Herein, we design a novel non-flammable fluorinated ester electrolyte that enables high cycling stability in wide-temperature variations (e.g., −50 °C–60 °C) and superior power capability (fast charge rates up to 5.0 C) for the graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) battery at high voltage (i.e., >4.3 V vs. Li/Li+). Moreover, this work sheds new light on the dynamic evolution and interaction among the Li+, solvent, and anion at the molecular level. By elucidating the fundamental relationship between the Li+ solvation structure and electrochemical performance, we can facilitate the development of high-safety and high-energy-density batteries operating in harsh conditions.  相似文献   

13.
Rechargeable lithium-ion batteries (LIBs) have been the most commonly used batteries in the portable electronics market for many years. Polypyrrole (PPy) was now investigated as a conducting addition agent to enhance the cathode and anode materials performance in LIBs. Actual development in the synthesis and modification of the most promising cathode materials, LiFePO4, is described in this mini-review. The main aim of this mini-review is to highlight the effect of PPy based conducting polymer films on the electrochemical efficiency of LiFePO4 based cathode materials for LIBs summarizing our own research. Influence of the polyethylene glycol (PEG) additive in the PPy coating layer was evaluated. The improved electrochemical performance can be attributed to the enhanced electronic conductivity, higher solubility of ions originating from the electrolyte, higher movability of dissolved Li+ ions, and improved structural flexibility resulting from the incorporation of the PPy or PPy/PEG conducting polymer layer. The stabilizing effect of PEG in PPy was reflected in lowered cross-linking and reduced structural defects and, in consequence, in higher specific capacity of PPy/PEG-LiFePO4 cathodes compared to that of PPy-LiFePO4 cathodes and bare LiFePO4 cathodes.  相似文献   

14.
近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义.  相似文献   

15.
Electrodiffusion properties of chromium-substituted lithium-manganese spinel Li x Mn1.95Cr0.05O4 intended for application as a cathodic material for lithium-ion batteries is studied. The studies are carried out at 25°C using the electrochemical impedance spectroscopy technique in alkyl-carbonate electrolyte. In the analysis of impedance spectra, the apparatus of electric equivalent circuits was employed to determine surface layer resistances, double electric layer capacitance, differential intercalation capacity, chemical diffusion coefficient D of lithium, and other electrode characteristics. The issues of substantiating the choice of electric equivalent circuits and correct interpretation of their elements are discussed; dependences of the calculated model parameters on the electrode potential (lithium concentration in the electrode) are analyzed. The chemical diffusion coefficient of Li+ in Li x Mn1.95Cr0.05O4 found on the basis of the impedance spectra is in the range of 10?9 to 10?12 cm2/s under electrode potential variation in the range of 3.5–4.5 V (vs. Li/Li+) with a pronounced minimum of D in the middle of this range. Repeated cycling of the electrode is accompanied by a gradual increase in resistance of the solid-electrolyte interphase (SEI).  相似文献   

16.
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3PO4-rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of −20 °C.  相似文献   

17.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

18.
Solid electrolyte interface (SEI) is a critical factor that influences battery performance. SEI layer is formed by the decomposition of organic and inorganic compounds after the first cycle. This study investigates SEI formation as a product of electrolyte decomposition by the presence of flouro-o-phenylenedimaleimaide (F-MI) additive. The presence of fluorine on the maleimide-based additive can increase storage capacity and reversible discharge capacity due to high electronegativity and high electron-withdrawing group. The electrolyte containing 0.1 wt% of F-MI-based additive can trigger the formation of SEI, which could suppress the decomposition of remaining electrolyte. The reduction potential was 2.35 to 2.21 V vs Li/Li+ as examined by cyclic voltammetry (CV). The mesocarbon microbeads (MCMB) cell with F-MI additive showed the lowest SEI resistance (Rsei) at 5898 Ω as evaluated by the electrochemical impedance spectroscopy (EIS). The morphology and element analysis on the negative electrode after the first charge-discharge cycle were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). XPS result showed that MCMB cell with F-MI additive provides a higher intensity of organic compounds (RCH2OCO2Li) and thinner SEI than MCMB cell without an additive that provides a higher intensity of inorganic compound (Li2CO3 and Li2O), which leads to the performance decay. It is concluded that attaching the fluorine functional group on the maleimide-based additive forms the ideal SEI formation for lithium-ion battery.  相似文献   

19.
The electrochemical performances of lithium-ion batteries(LIBs) are closely related to the interphase between the electrode materials and electrolytes. However, the development of lithium-ion batteries is hampered by the formation of uncontrollable solid electrolyte interphase(SEI) and subsequent potential safety issues associated with dendritic formation and cell short-circuits during cycling. Fabricating artificial SEI layer can be one promising approach to solve the above issues. This review summarizes the principles and methods of fabricating artificial SEI for three types of main anodes:deposition-type(e.g., Li), intercalation-type(e.g., graphite) and alloy-type(e.g., Si, Al). The review elucidates recent progress and discusses possible methods for constructing stable artificial SEIs composed of salts, polymers, oxides, and nanomaterials that simultaneously passivate anode against side reactions with electrolytes and regulate Li+ ions transport at interfaces. Moreover, the reaction mechanism of artificial SEIs was briefly analyzed, and the research prospect was also discussed.  相似文献   

20.
Solid electrolyte interphase (SEI) film formation on graphite electrodes was studied on highly oriented pyrolytic graphite (HOPG) in nonaqueous electrolyte by in situ electrochemical atomic force microscopy (AFM). For potentials negative to 0.7 V versus Li|Li+ a SEI film is formed on the HOPG electrode surface. After the first cycle the film is rough and covers the surface of the HOPG electrode only partially. After the second cycle the HOPG surface is fully covered by a compact film. The thickness of the SEI film was measured by increasing the pressure of the AFM tip and thus scraping a part of the electrode surface. In this way a thickness of about 25 nm was found for the SEI film formed after two scan cycles between 3 and 0.01 V versus Li|Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号