首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we introduce a low-cost approach for fabricating micro-lens arrays that is based on photosensitive sol–gel and multi-beam laser interference. UV photosensitive ZrO2 gel films are prepared with Zr(O(CH2)3CH3)4 and BzAcH as the precursor and chemical modifier, respectively. With UV laser irradiation via different dose, nonlinear photodecomposition occurs in this film. Large scale 2D micro lens arrays with the sizes of 830 nm × 830 nm and 280 nm × 280 nm are fabricated by four-beam laser interference. The surface profile modeling shows that the micro lens is plano convex lens, and the effective focal lengths are 812.0 nm and 317.6 nm, respectively.  相似文献   

2.
We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (~2.3 λ) and a near diffraction-limited spot size of 400 nm (~0.61 λ).  相似文献   

3.
A lensed patch cord probe has been made with a ball lens packaged in a metal cylinder. By simply placing a ball lens directly in front of a fiber patch cord, a compact and potentially disposable sampling probe for optical coherence tomography (OCT) could be implemented. To achieve a sufficiently long working distance and a good transverse resolution simultaneously, the proper ball lens diameter and the distance between the ball lens and the fiber patch cord were investigated. Experimentally, a working distance of up to 5.2 mm, 3 dB bandwidth of 2 mm, and transverse resolution of 16 μm were achieved. With the patch cord probe, a common path swept source OCT system was implemented and used to demonstrate the feasibility as the dedicated probe for dentistry.  相似文献   

4.
The most common method to derive a temperature value from a thermal image in humans is the calculation of the average of the temperature values of all the pixels confined within a demarcated boundary defined region of interest (ROI). Such summary measure of skin temperature is denoted as Troi in this study. Recently, an alternative method for the derivation of skin temperature from the thermal image has been developed. Such novel method (denoted as Tmax) is based on an automated (software-driven) selection of the warmest pixels within the ROI. Troi and Tmax have been compared under basal, steady-state conditions, resulting very well correlated and characterized by a bias of approximately 1 °C (Tmax > Troi).Aim of this study was to investigate the relationship between Tmax and Troi under the nonsteady-state conditions induced by physical exercise. Thermal images of quadriceps of 13 subjects performing a squat exercise were recorded for 120 s before (basal steady state) and for 480 s after the initiation of the exercise (nonsteady state). The thermal images were then analysed to extract Troi and Tmax. Troi and Tmax changed almost in parallel during the nonstead -state. At a closer inspection, it was found that during the nonsteady state the bias between the two methods slightly increased (from 0.7 to 1.1 °C) and the degree of association between them slightly decreased (from Pearson’s r = 0.96 to 0.83). Troi and Tmax had different relationships with the skin temperature histogram. Whereas Tmax was the mean, which could be interpreted as the centre of gravity of the histogram, Tmax was related with the extreme upper tail of the histogram. During the nonsteady state, the histogram increased its spread and became slightly more asymmetric. As a result, Troi deviated a little from the 50th percentile, while Tmax remained constantly higher than the 95th percentile. Despite their differences, Troi and Tmax showed a substantial agreement in assessing the changes in skin temperature following physical exercise. Further studies are needed to clarify the relationship existing among Tmax, Troi and cutaneous blood flow during physical exercise.  相似文献   

5.
This work presents a photogrammetric technique that provides geometric and thermal information about building façades. It uses low cost and portable scale bars, specially designed for thermal imaging, and processing software based on single image rectification. Image rectification corrects the original photo displacement due to the projection and perspective, and radial distortions introduced by the lens of the camera.The technique is tested by comparing laser scanning and thermal data. Seven segments of different orientation and length are selected for the measurement. Accuracy tests show errors between 44 mm and 151 mm. Precision values range between 22 mm and 61 mm for a maximum length of 7259 mm. The accuracy and precision results obtained for the technique open the possibility of extending its use to building inspection tasks.  相似文献   

6.
We have demonstrated 384 × 288 pixels mid-wavelength infrared focal plane arrays (FPA) using type II InAs/GaSb superlattice (T2SL) photodetectors with pitch of 25 μm. Two p-i-n T2SL samples were grown by molecular beam epitaxy with both GaAs-like and InSb-like interface. The diode chips were realized by pixel isolation with both dry etching and wet etching method, and passivation with SiNx layer. The device one with 50% cutoff wavelength of 4.1 μm shows NETD  18 mK from 77 K to 100 K. The NETD of the other device with 50% cutoff wavelength at 5.6 μm is 10 mK at 77 K. Finally, the T2SL FPA shows high quality imaging capability at the temperature ranging from 80 K to 100 K which demonstrates the devices’ good temperature performance.  相似文献   

7.
The oxidation of W(110) was studied over a temperature a range of 1000 K to 1600 K at 1 × 10? 6 Torr oxygen. The subsequent oxide structure was then characterized using Low Energy Electron Diffraction (LEED) and Scanning Tunneling Microscopy (STM). It was found that the resulting structure was remarkably similar to that of Mo(110) oxidized under similar conditions. Using the Mo(110) oxide structure as our basis, along with atomic resolution STM images, we have constructed a model for the surface oxide of W(110).  相似文献   

8.
Laser cutting characteristics including power level and cutting gas pressure are investigated in order to obtain an optimum kerf width. The kerf width is investigated for a laser power range of 50–170 W and a gas pressure of 1–6 bar for steel and mild steel materials. Variation of sample thickness, material type, gas pressure and laser power on the average cut width and slot quality are investigated. Optimum conditions for the steel and mild steel materials with a thickness range of 1–2 mm are obtained. The optimum condition for the steel cutting results in a minimum average kerf width of 0.2 mm at a laser power of 67 W, cutting rate of 7.1 mm/s and an oxygen pressure of 4 bar. A similar investigation for the mild steel cutting results in a minimum average kerf width of 0.3 mm at the same laser power of 67 W, cutting rate of 9.5 mm/s, and an oxygen pressure of 1 bar. The experimental average kerf is about 0.3 mm, which is approximately equal to the estimated focused beam diameter of 0.27 mm for our focusing lens (f=4 cm and 100 W power). This beam size leads to a laser intensity of about 1.74×109 W/m2 at the workpiece surface. The estimated cutting rate from theoretical calculation is about 8.07 mm/s (1.0 mm thickness and 100 W power), which agrees with the experimental results that is 7.1 mm/s for 1.0 mm thickness of mild steel at the laser power of 88 W.  相似文献   

9.
This paper represents a novel digital readout for infrared focal plane arrays with 2.33 Ge charge handling capacity while achieving quantization noise of 161 e. Pixel level A/D conversion has been realized by pulse frequency modulation (PFM) technique supported with a novel method utilizing extended integration that eliminates the requirement for an additional column ADC. Digital pixel operates with two phases; the first phase is as ordinary PFM in charge domain and the second phase is in time domain, allowing the fine quantization and low quantization noise. A 32 × 32 prototype has been manufactured and tested. Measured peak SNR at half well fill is 71 dB with significant SNR improvement for low illuminated pixels due to extremely low quantization noise. 32 × 32 ROIC dissipates only 1.1 mW and the figure of merit for power dissipation is measured to be 465 fJ/LSB, compared to 930 fJ/LSB and 1470 fJ/LSB of the state of the art.  相似文献   

10.
We have demonstrated the use of bulk antimonide based materials and type-II antimonide based superlattices in the development of large area mid-wavelength infrared (MWIR) focal plane arrays (FPAs). Barrier infrared photodetectors (BIRDs) and superlattice-based infrared photodetectors are expected to outperform traditional III–V MWIR and LWIR imaging technologies and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow InAs/GaSb superlattice pin photodiodes and bulk InAsSb structures on GaSb substrates. The coupled quantum well superlattice device offers additional control in wavelength tuning via quantum well sizes and interface composition, while the BIRD structure allows for device fabrication without additional passivation. As a demonstration of the large area imaging capabilities of this technology, we have fabricated mid-wavelength 1024 × 1024 pixels superlattice imaging FPAs and 640 × 512 MWIR arrays based on the BIRD concept. These initial FPA have produced excellent infrared imagery.  相似文献   

11.
PurposeTo develop a RF coil system for joint imaging of intracranial and extracranial arterial vessel wall at 3T.Materials and methodThe coil system consists of a 24-channel head coil combined with an 8-channel carotid coil. It is compared with a standard coil configuration (12-channel head coil + 4-channel neck coil + 8-channel carotid coil) for SNR and g-factors in phantoms and healthy volunteers. The clinical relevance of the proposed coil system is also evaluated in patients.ResultsIn phantom experiments, the SNR of the proposed coil system is 53% higher than the maximum SNR of the standard coil configuration at the center of the phantom which usually corresponds to the intracranial region of the head. The g-factors of the proposed coil system in the sagittal plane are lower than the standard coil configuration (by 10.8% and 26.6% for R = 2 and 4 respectively) in the same experiment. In healthy volunteer experiments, 55% of the pixels have SNR above 100 for the proposed coil system, which is 33% more than that of the standard coil configuration. The maximum g-factors in the standard configuration are higher than those from the new coil design by 12% at R = 2 and up to 36% at R = 4 in the sagittal plane. In patients, in-vivo intracranial and extracranial arterial wall images at an isotropic spatial resolution of 0.6 mm can be acquired using the proposed coil system. Plaques are well depicted from the images.ConclusionsThe performance of the proposed coil set is superior to the standard coil configuration, providing high SNR, low g-factor and good spatial coverage needed for simultaneous high resolution imaging of intracranial and extracranial arterial walls. Images acquired in 7.6 min using the proposed coil system can achieve an isotropic spatial resolution of 0.6 mm and can be used to depict plaques on the intracranial and extracranial arterial walls in patients.  相似文献   

12.
We present a method of incorporation of gold nanoparticles in SDS (sodium dodecyl sulfate) bubbles with a low polydispersity index (monodispersed nanoparticles). Both the bubbles and nanoparticles maintained their structural and morphologic properties after functionalization. The bubbles present a radio of 0.38 mm with a standard deviation of±0.018 mm. The gold nanoparticles were obtained with sucrose as the catalytic agent and ascorbic acid as the reducing agent. The nanoparticles display several geometric morphologies as well as sizes inferior to 50 nm, as observed in the images obtained with Transmission Electron Microscopy (TEM). The optical properties were studied by optical absorption spectroscopy. The absorption band linked to the surface plasmon resonance (SPR) is located at 550 nm before and after the functionalization of the bubbles. Moreover, microscopic bubbles with a diameter smaller than 1 µm with the ability to stabilize nanoparticles in their surface were found in isolated regions of the sample. Additionally, the Surface Enhancement Raman Spectroscopy (SERS) properties of the colloid were analyzed with common drugs.  相似文献   

13.
《Ultrasonics》2013,53(1):36-44
Vibro-acoustography (VA) is a medical imaging method based on the difference-frequency generation produced by the mixture of two focused ultrasound beams. VA has been applied to different problems in medical imaging such as imaging bones, microcalcifications in the breast, mass lesions, and calcified arteries. The obtained images may have a resolution of 0.7–0.8 mm. Current VA systems based on confocal or linear array transducers generate C-scan images at the beam focal plane. Images on the axial plane are also possible, however the system resolution along depth worsens when compared to the lateral one. Typical axial resolution is about 1.0 cm. Furthermore, the elevation resolution of linear array systems is larger than that in lateral direction. This asymmetry degrades C-scan images obtained using linear arrays. The purpose of this article is to study VA image restoration based on a 3D point spread function (PSF) using classical deconvolution algorithms: Wiener, constrained least-squares (CLSs), and geometric mean filters. To assess the filters’ performance on the restored images, we use an image quality index that accounts for correlation loss, luminance and contrast distortion. Results for simulated VA images show that the quality index achieved with the Wiener filter is 0.9 (when the index is 1.0 this indicates perfect restoration). This filter yielded the best result in comparison with the other ones. Moreover, the deconvolution algorithms were applied to an experimental VA image of a phantom composed of three stretched 0.5 mm wires. Experiments were performed using transducer driven at two frequencies, 3075 kHz and 3125 kHz, which resulted in the difference-frequency of 50 kHz. Restorations with the theoretical line spread function (LSF) did not recover sufficient information to identify the wires in the images. However, using an estimated LSF the obtained results displayed enough information to spot the wires in the images. It is demonstrated that the phase of the theoretical and the experimental PSFs are dissimilar. This fact prevents VA image restoration with the current theoretical PSF. This study is a preliminary step towards understanding the restoration of VA images through the application of deconvolution filters.  相似文献   

14.
This study attempted to develop a detection system for lens sag of the microlens array in real time using an optical automatic inspection framework to link with the computer through a camera. An image processing technique was applied to detect the spherical microlens array, and then, the results were compared.The system light source used laser light and applied CCD to collocate with the microscope array to form an automatic optical detection system for an optical interferometric microscope. It applied the principle of the Fizeau interferometer, illuminated the surface of microlens array, and formed the phase difference required by the interference of two lights through the laser light reflected by the reference plane and the surface of the microlens array, thus, forming an interference fringe.When the sag of the microlens was much longer than the wave length of the detection light source, the fringe would be densely distributed, thus, only a few central fringes were clear in the microscopic image. An image processing method was used to search the center of the interference fringe and a creative algorithm was utilized to obtain the lens sag of the microlens. As proved by the experiment, lens sag of 4 microlens arrays were detected in real time, with a minimum detection error of 0.08 μm, and a maximum detection error of 4 μm (error value 1 ~ 9%), according to different sample processes. This system featured a simple structure and is applicable to non-contact detection and detection of different-sized microlens arrays.  相似文献   

15.
This paper describes a multi-pass traveling-wave amplification structure used to amplify 8×8 mm signal lasers with a 5-mm thick Nd:glass slice. The pumping source is a laser diode stack containing eight laser diode arrays. These arrays are carefully placed to maintain high coupling efficiency. Experimental results show that a 300-μJ signal laser can be amplified to 13 mJ with the first 12-pass structure of amplification, and to 246 mJ with its dual-pass feature. The method for solving the thermal problem of this structure is also calculated and analyzed. Results show that the cooling solution of a sapphire slice can effectively reduce the temperature of the pumping side of the Nd:glass slice.  相似文献   

16.
《Applied Surface Science》2001,169(1-2):92-98
Self-assembled In0.4Ga0.6As island arrays have been grown on (3 1 1)B GaAs substrates by using atomic hydrogen-assisted molecular beam epitaxy (H-MBE). The evolution process of surface morphology with deposition has been analyzed by atomic force microscopy (AFM) and the development of lateral ordering has been highlighted by two-dimensional fast Fourier transformation (2DFFT) analysis of the AFM images. It is revealed that the InGaAs islands are arranged in nearly perfect two-dimensional (2D) square-like lattice with two sides parallel to [0 1 −1] and [−2 3 3] azimuths. Such an alignment of islands is coincident with the anisotropy of bulk elastic modulus of the GaAs (3 1 1)B substrate.  相似文献   

17.
Scanning tunneling microscopy study showed that the (2 × 2) reconstruction on the (001) surface of SrTiO3 should have a surface structure with a 4-fold symmetry. The previously proposed solution for the (2 × 2) reconstruction with the p2gm symmetry only has a 2-fold symmetry. In this study density functional theory study was carried out to propose a possible surface structure with the p4mm surface symmetry which matches the scanning tunneling microscopy images and suggests that two different (2 × 2) surface structures exist. The formation of the (2 × 2) reconstruction with the p4mm symmetry may be due to the kinetics as it has slightly higher surface energy than the one with the p2gm symmetry.  相似文献   

18.
Shiow-Fon Tsay 《Surface science》2012,606(17-18):1405-1411
A new reconstructed Pt/Ge(001)–4 × 2 surface structure of 0.25 ML Pt deposition is suggested based on density functional theory. The Ge dimers form nanowire arrays on a Pt-chain modified Ge(001) surface in which the chain is located between the two quasi-dimer rows and below the Ge nanowire. The simulated scanning tunneling microscope (STM) images of the surface are in excellent agreement with the previously observed STM features and sample bias dependence. It is the nanowire Ge dimers and not the Pt atoms that contribute to the STM images for occupied states at high sample biases, contrary to what has always been assumed in experiments. The surface bands of the Pt chain and quasi-dimer rows exhibit quasi-one-dimensional metallic behavior in the direction of the nanowire. When changing from the 4 × 2 to the 4 × 4 structure, there are likely pseudogaps opened at the new surface Brillouin zone boundary, which simultaneously reduce the metallicity. This may be related to the Peierls instability. The interaction between the Pt chain and the quasi-dimer row, as well as the inter-quasi-dimer row interaction, is of essential importance for stabilization.  相似文献   

19.
Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.  相似文献   

20.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号