共查询到20条相似文献,搜索用时 15 毫秒
1.
酪氨酸蛋白磷酸酯酶1B抑制剂的分子对接和三维定量构效关系研究 总被引:1,自引:1,他引:0
用一种柔性分子对接方法(FlexX)将12个2-草酰胺苯甲酸类抑制剂和酪氨酸蛋白磷酸酯酶(PTP1B)活性口袋进行分子对接,对接程序预测的抑制剂和酶之间的相互作用能与抑制活性之间有很好的相关性(非线性相关系数R2达0.859),这说明对接结果可以比较准确地预测抑制剂和PTP1B之间的结合模式.然后,将33个同类抑制剂的骨架叠合在分子对接预测的结合构象上,用比较分子力场分析方法(CoMFA)对其进行三维定量活性构效关系研究,得到的CoMFA模型具有很好的统计相关性(交互验证回归系数q2为0.650),并可以准确地预测测试集6个化合物的活性(平均标准偏差为0.177).同时,由CoMFA模型得出的抑制剂改造信息与用FlexX预测的结合模式是一致的,进一步证明我们预测的结合模式是正确的.为研究这类抑制剂和PTP1B的结合模式及对抑制剂进行结构改造提供了信息. 相似文献
2.
对33个喹啉衍生物的雌激素β受体活性进行了分子对接以及比较分子力场分析(CoMFA)和比较分子相似性指数分析(CoMSIA). 对接结果显示氢键和疏水作用是配体与受体结合的主要因素,同时结果亦显示对接结合能与观测值pIC50具有极显著的线性相关性. 根据对接后各优势构象将33个样本进行叠合并进行CoMFA与CoMSIA研究,均得到了较优的结果,其中以选用立体场、静电场和疏水场建立的CoMSIA模型结果最优,其主成分数,r2,q2(LOO)和r2pred分别为2, 0.894, 0.708和0.802. 构效关系模型分析显示基团的空间位阻、电性及疏水作用是影响活性的主要因素 相似文献
3.
本文对橙酮类DRAK2抑制剂的化学结构与生物活性之间的关系进行研究。采用三维定量构效关系(3D-QSAR)中的比较分子力场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)方法针对59个DRAK2抑制剂建立3D-QSAR模型,阐明了抑制剂化学结构与其生物活性之间的关系。所构建的CoMFA模型交叉验证系数(q2)为0.625,非交叉验证系数(r2)为0.811,标准偏差(S)为0.365,Fisher检验值(F)为59.971;所构建的CoMSIA模型q2为0.62,r2为0.846,S为0.333,F值为56.453。内部和外部验证参数表明,生成的3D-QSAR模型均具有良好的预测能力和显著的统计学可靠性。分子对接实验与等势图的一致性,进一步表明本次分子模拟是可靠的。本研究对发现新型的潜在的更高活性的橙酮类DRAK2抑制剂具有指导意义。 相似文献
4.
通过分子对接和三维定量构效关系(3D-QSAR)两种方法来确定两类马来酰胺类的糖原合成酶激酶-3β(GSK-3β)抑制剂的结合方式. 首先, 用分子对接确定抑制剂与GSK-3β结合模式及其相互作用; 然后用比较分子力场分析法(CoMFA)与比较分子相似性指数分析法(CoMSIA)对48个化合物做三维定量构效关系的分析. 两种方法得出的交互验证回归系数分别为0.669(CoMFA)和0.683(CoMSIA), 证明该模型具有很好的统计相关性, 同时也说明该模型具有较高的预测能力.根据该模型提供的信息, 设计出9个预测活性较好的分子. 相似文献
5.
采用比较分子场分析(CoMFA)方法研究了一组嘧啶类衍生物酪氨酸激酶抑制剂活性与结构的关系.所得模型不仅能够很好地预报训练集中的化合物的活性,而且还可以准确地预报预报集中的化合物活性.通过分析分子场等值面图在空间的分布,可以观察到叠加分子周围的立体和静电特征对化合物活性的影响. 相似文献
6.
家蝇与大鼠GABA受体抑制剂的药效团模型及其3D-QSAR研究 总被引:4,自引:1,他引:4
采用DISCOtech方法,用7个大鼠γ-氨基丁酸(GABA)A受体抑制剂和11个家蝇GABAA受体抑制剂分别建立了其药效团模型;用CoMFA方法建立了22个大鼠GABAA受体抑制剂和29个家蝇GABAA受体抑制剂的3D-QSAR模型,模型的交叉验证相关系数分别为0.526和0.679,验证了药效团模型的合理性,为设计更高活性和更高选择性的化合物提供了参考 相似文献
7.
采用分子对接方法得到了一系列6-萘甲基取代HEPT类逆转录酶抑制剂分子与HIV-1逆转录酶复合物模型,从中抽取出抑制剂分子的活性构象,进一步应用CoMFA和CoMSIA方法建立了具有较好预测能力的3D-QSAR模型,深入探讨了这些化合物的定量构效关系,为进一步的药物设计奠定了良好的基础.另外,以化合物13及其相应的β异构体24为代表,结合量子化学从头算分子轨道理论方法考察了它们的前线轨道,为阐明α和β系列化合物的活性差异提供了理论依据. 相似文献
8.
采用Topomer Co MFA方法对24个二芳基苯胺衍生物进行三维定量构效关系研究,建立了3DQSAR模型,所得优化模型的非交叉相关系数、交互验证系数以及外部验证的复相关系数分别为0.928,0.654和0.940,结果表明该模型具有良好的稳定性和预测能力。采用分子对接技术对药物与受体的作用机制进行了研究,结果显示,药物与HIV-1逆转录酶的LYS172,GLU138,LYS101等位点作用明显。运用这些信息进行分子设计,在理论上获得了一些具有较高活性的新的二芳基苯胺类抗艾滋病药物,该QSAR的研究结果可为新药合成提供理论参考。 相似文献
9.
选取64个具有潜力的含磷嘧啶类细胞周期依赖性蛋白激酶(CDK9)小分子抑制剂,采用分子对接方法研究了该类小分子与CDK9的结合作用,结果表明,分子构象、氢键形成、疏水性和氨基酸残基Cys106在此类抑制剂与CDK9的结合过程中具有重要作用.在配体叠合的基础上,运用比较分子力场分析(Co MFA)、比较分子相似性指数分析(Co MSIA)和Topomer Co MFA(T-COMFA)研究了分子结构与抑制活性的关系,发现由训练集立体场、静电场和疏水场组合的Co MSIA模型为最优模型,其内部交叉验证相关系数(Q2=0.557)、非交叉验证相关系数(R2=0.959)和外部预测相关系数(r2=0.863)具有统计学意义,该模型的三维等值线图直观显示了化合物的活性与其三维结构的关系.根据这些结果设计了10个具有新结构的含磷嘧啶类化合物,分子对接和分子动力学模拟结果表明,新化合物和CDK9的结合模式与原化合物64相同,自由能分析从理论上证明了新化合物64d的CDK9抑制活性优于化合物64,并且显示含磷基团与残基Asp109的静电场能在化合物与CDK9作用过程中有重要作用. 相似文献
10.
为了获得高活性、结构新颖的整合酶链转移(INST)抑制剂,本文采用Co MFA和Co MSIA两种方法对32个萘啶类INST抑制剂进行了三维定量构效关系研究,并建立了相关模型,其交叉验证系数分别为q~2=0. 809和q~2=0. 816,拟合验证系数分别为r~2=0. 998和r~2=0. 981,表明所建立的模型是可靠的且具有一定的预测能力。利用分子对接探讨小分子化合物与INST蛋白的相互作用模式,结果表明,萘啶类化合物主要通过疏水作用和氢键作用与INSTIs蛋白结合。最后通过分子动力学模拟进一步验证对接结果发现,对接的结合模式与分子动力学模拟得到的结果是一致的。本研究获得的综合模型和推论可以为开发有效的HIV INSTIs提供重要的理论信息。 相似文献
11.
趋化因子CCR2参与炎症反应、免疫移植排斥和肿瘤的发生,已成为新的研究热点。本文以CCR5的晶体结构为模板,同源模建CCR2的结构,并用CCR2小分子抑制剂与其进行分子对接以得到小分子的最优构象。在对接叠合的基础上建立了QSAR模型,采用比较分子场分析(Co MFA)以及比较分子相似性分析(Co MSIA)研究得到Co MFA和Co MSIA模型最佳评价参数分别为q2=0.743,r2=0.968和q2=0.68,r2=0.978。3D-QSAR模型的等势图分析表明,改造配体R3基团可提高化合物活性。所建模型稳定性好、预测性强,对基于CCR2的小分子抑制剂的设计、优化和改造提供了参考。 相似文献
12.
Vascular endothelial growth factors(VEGFs)respectively bind to each of three receptor tyrosine kinases (RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine... 相似文献
13.
Treatment of several autoimmune diseases and types of cancer has been an intense area of research over the past two decades. Many signaling pathways that regulate innate and/or adaptive immunity, as well as those that induce overexpression or mutation of protein kinases, have been targeted for drug discovery. One of the serine/threonine kinases, Interleukin-1 Receptor Associated Kinase 4 (IRAK4) regulates signaling through various Toll-like receptors (TLRs) and interleukin-1 receptor (IL1R). It controls diverse cellular processes including inflammation, apoptosis, and cellular differentiation. MyD88 gain-of-function mutations or overexpression of IRAK4 has been implicated in various types of malignancies such as Waldenström macroglobulinemia, B cell lymphoma, colorectal cancer, pancreatic ductal adenocarcinoma, breast cancer, etc. Moreover, over activation of IRAK4 is also associated with several autoimmune diseases. The significant role of IRAK4 makes it an interesting target for the discovery and development of potent small molecule inhibitors. A few potent IRAK4 inhibitors such as PF-06650833, RA9 and BAY1834845 have recently entered phase I/II clinical trial studies. Nevertheless, there is still a need of selective inhibitors for the treatment of cancer and various autoimmune diseases. A great need for the same intrigued us to perform molecular modeling studies on 4,6-diaminonicotinamide derivatives as IRAK4 inhibitors. We performed molecular docking and dynamics simulation of 50 ns for one of the most active compounds of the dataset. We also carried out MM-PBSA binding free energy calculation to identify the active site residues, interactions of which are contributing to the total binding energy. The final 50 ns conformation of the most active compound was selected to perform dataset alignment in a 3D-QSAR study. Generated RF-CoMFA (q2 = 0.751, ONC = 4, r2 = 0.911) model revealed reasonable statistical results. Overall results of molecular dynamics simulation, MM-PBSA binding free energy calculation and RF-CoMFA model revealed important active site residues of IRAK4 and necessary structural properties of ligand to design more potent IRAK4 inhibitors. We designed few IRAK4 inhibitors based on these results, which possessed higher activity (predicted pIC50) than the most active compounds of the dataset selected for this study. Moreover, ADMET properties of these inhibitors revealed promising results and need to be validated using experimental studies. 相似文献
14.
含呋喃环双酰脲类衍生物的三维定量构效关系研究 总被引:3,自引:0,他引:3
采用比较分子力场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA), 对27个新型双酰基脲类化合物的杀蚊幼虫(Aedes aegypti L.)活性进行三维定量构效关系(3D-QSAR)研究. 在CoMFA研究中, 考察了网格点步长对统计结果的影响. 在CoMSIA研究中, 系统考察了各种分子场组合、网格点步长和衰减因子对模型统计结果的影响, 发现立体场和氢键供体场的组合得到最佳模型. 所建立的CoMFA和CoMSIA模型的非交叉验证相关系数r2值分别为0.828和0.841, 并都具有较强的预测能力. CoMFA和CoMSIA模型的三维等值图不仅直观地解释了结构与活性的关系, 而且为后续优化该系列化合物提供了理论依据. 相似文献
15.
Katsuya Hyodo Yoshinori Arisaka Satoshi Yamaguchi Tetsuya Yoda Nobuhiko Yui 《Macromolecular bioscience》2019,19(4)
Modulation of material properties and growth factor application are critical in constructing suitable cell culture environments to induce desired cellular functions. Sulfonated polyrotaxane (PRX) surfaces with immobilized vascular endothelial growth factors (VEGFs) are prepared to improve network formation in vascular endothelial cells. Sulfonated PRXs, whereby sulfonated α‐cyclodextrins (α‐CDs) are threaded onto a linear poly(ethylene glycol) chain capped with bulky groups at both terminals, are coated onto surfaces. The molecular mobility of sulfonated PRX surfaces is modulated by tuning the number of threading α‐CDs. VEGF is immobilized onto surfaces with varying mobility. Low mobility and VEGF‐immobilization reinforce cell proliferation, yes‐associated protein activity, and rhoA, pdgf, ang‐1, and pecam‐1 gene expression. Highly mobile surfaces and soluble VEGF weakly affect these cell responses. Network formation is strongly stimulated in vascular endothelial cells only on low‐mobility VEGF‐immobilized surfaces, suggesting that molecular mobility and VEGF immobilization synergistically control cell function. 相似文献
16.
The molecular docking by LigandFit docking of Discovery Studios 2.5 was employed to the three-dimensional quantitative structure-activity relationship(3D-QSAR) studies of biphenyl carboxylic acid MMP3 inhibitors.A significant correlation coefficient was obtained between dock scores and biological activities.Based on the optimal docking conformations,3D-HoVAIF was employed to the QSAR studies of 51 biphenyl carboxylic acid MMP-3 inhibitors.R2 and Q_CV2(leave-one-out,LOO) of the optimal 3D-HoVAIF-PLS model were 0.873 and 0.841 respectively.The conclusions obtained from the PLS analysis were in agreement with the docking results. 相似文献
17.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors. 相似文献
18.
20 Typical flavonoids were selected for study on the interaction between them and PIM-1 kinase with the comparative molecular field analysis method(CoMFA) as well as the comparative molecular similarity index analysis method(CoMSIA) based on molecule docking.3D-QSAR models between these flavonoids and receptor PIM-1 kinase were established.The obtained optimal cross-validation correlation coefficient Q2 for CoMFA model was 0.582,and the non-cross-validation correlation coefficient R2 was 0.955;the corresponding values for CoMSIA model were 0.790 and 0.974,respectively.These two models showed fairly fine stability and predictive ability.In addition,molecule docking results revealed the key residues in the receptor cavity and their specific action ways with flavonoids. 相似文献
19.
芳香噻嗪类衍生物被证明是一类选择性较好的高活性醛糖还原酶抑制剂(ARIs).本文对44个芳香噻嗪类化合物进行了分子对接(docking)和三维定量构效关系(3D-QSAR)研究,并探索了此类化合物与醛糖还原酶(ALr2)的作用机理.醛糖还原酶与醛还原酶(ALR1)活性位点的叠加结果显示, ALr2中残基Leu 300和Cys298的存在是化合物1m具有高选择性的原因.分别建立了比较分子场分析方法(CoMFA, q2 = 0.649, r2 =0.934; q2:交叉验证相关系数, r2:非交叉验证相关系数)和比较分子相似性指数分析方法(CoMSIA, q2 = 0.746, r2 = 0.971)模型,并对影响此类化合物生物活性的结构进行了鉴定.结果显示,两个模型均具有较高预测能力,并通过测试集中的7个化合物进行了验证,其中CoMFA模型和CoMSIA模型的预测相关系数(rPred2)分别为0.748和0.828. 3D-QSAR模型中的三维等值线图表明,在化合物1m的苄基环上C3和C4位置以及苯并噻嗪母核上C5和C7位置进行改进可能对生物活性的提高有利,此预测与我们前期报道的苯并噻嗪母核C7位改进结果一致.本文所建3D-QSAR模型能够在理性设计具有更高生物活性的新型ARIs中发挥重要作用. 相似文献
20.
大麻素CB1受体属于G蛋白偶联受体. 以牛视紫红质的晶体结构为模板, 利用同源模建法对CB1受体的三维结构进行了模拟, 并采用分子动力学方法对模型进行了修正和优化. 在此基础上, 分析了活性位点的组成和结构, 研究了拮抗剂利莫那班与CB1受体的对接, 明确了CB1受体与利莫那班结合时起重要作用的氨基酸残基. 发现利莫那班与CB1受体残基Lys192形成氢键相互作用是CB1受体拮抗剂的重要分子作用基础. 相似文献