首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
藻胆体的变藻蓝蛋白 (allophycocyanin ,APC)核外联天线杆 ,内接光合反应中心 ,在能量传递中起着承上启下的作用 .根据X射线晶体结构数据和变藻蓝蛋白亚基的吸收和荧光光谱 ,以计算机模拟方法研究变藻蓝蛋白单体和三聚体中的能量传递过程 .计算结果表明 :变藻蓝蛋白单体中两个亚基之间能量传递性质与C 藻蓝蛋白 (C phycocyanin ,C PC)相似 ;而在三聚体时则与C 藻蓝蛋白三聚体有根本的区别 .无论什么聚集态 ,C 藻蓝蛋白中β84色团总是主要的荧光发射体 ;而在变藻蓝蛋白中α84则成为主要的荧光发射体 .这与C 藻蓝蛋白中能量传递的基本单元是六聚体而在变藻蓝蛋白中为三聚体的事实一致 .由此可以推断变藻蓝蛋白中 2个三聚体是以α84相接的面面接近方式 ,因而 2个三聚体间能量传递主要靠α84色团实现 .变藻蓝蛋白这种特殊性是保证其高效传能功能的关键  相似文献   

2.
多变鱼腥藻中藻红蓝蛋白内能量传递机制的研究   总被引:2,自引:0,他引:2  
通过利用稳态光谱技术,光谱解叠技术和时间分辨荧光光谱技术对PEC单体内的能量传递过程进行详细研究.结果表明:在PEC单体内.α亚基上的PVB发色团可以将激发能传递给β亚基上的2个PCB发色团上;其能量传递时间常数分别为34.7和130ps;1.57us的组分归属为β亚基上PCB发色团终端发射;515ps的组分可初步指认为β亚基上两个PCB发色团间的能量传递时间常数.  相似文献   

3.
本文以晶体结构数据为依据,计算了C-藻蓝蛋白的三聚体和六聚体(天然聚集态)内进行的能量传递过程,结果表明:在荧光发射前,激发能可以在一些途径上重复传递多次,聚集态越高,重复传递次数越少;三聚体中一个单体上的m色团与相邻单体上的f色团有最近的距离和适宜的取向,因而在这样两个色团之间的传递具有最短的时间常数(<1ps),它们构成快速传递对。三聚体内有三个这样的快速传递对,它们主要通过单体内的m(?)f和单体间的f(?)f通道联系,s色团主要与同一单体内的f色团联系;六聚体中,连接两个三聚体的主要通道有两类:即m(?)m通道和s(?)s通道,而f色团上的激发能主要通过同一快速传递对中的m色团传递到另一个三聚体上。这样的六聚体结构具有较高的能量传递效率,成为一种最优结构。  相似文献   

4.
利用超快速时间分辨光谱研究了蓝绿藻藻胆体的2个变藻蓝发射终端(APB,API)单体和三聚体内的能量传递过程,探测到APB和API单体的两组亚基α^AP/β^AP和α^APB/β^AP间的能量传递时间常数分别为30ps和194ps。APB和API三聚体所共有的9-32ps的短寿命组分来源于同一单体内能量由α^AP向βAP的传递过程。  相似文献   

5.
从螺旋藻藻胆体中分离出4种不同结构和光谱形式的变藻蓝蛋白复合物APⅠ、APⅡ、APⅢ和APB, 利用吸收光谱、荧光光谱比较了三聚体和单体的光谱特性, 通过对吸收光谱的光谱解曾以及各组分的归属, 研究了变藻蓝蛋白复合物内各色团间相互作用的性质和在能量传递中的功能.结果表明, 复合物内色团间的作用关系可以用Forster偶极-隅极作用机制来解释, 由于连接蛋白和同源亚基的存在影响其结构的对称性, 进而影响各色团间相互作用的形式和性质.  相似文献   

6.
用计算机模拟方法研究藻红蓝蛋白中的能量传递过程。藻经蓝蛋白(PEC)的结构与C-藻蓝蛋白(C-PC)相似,因而两者表现出若干相似的性质;二蛋白之间的主要差别在于。亚基上的色团,在PEC中它是藻紫胆素色团,在C-PC中它是藻蓝胆素色团。这一差别,使PEC中的能量传递过程表现出特殊性。模拟计算结果表明:(1)PEC中的0_(84)色团成为比B_(155)色团功能更强的增感色团,它把能量转移到其它色团,本身极少发荧光。(2)PEC三聚体中仅有相邻单体中的0_(84)→B_(84)的传递时间常数小于1ps,因此,用fs(飞秒)级时间分辩光谱应能准确地得到这一传递的时间常数。(3)由于醚_(84)的特性,使其它色团的作用也相对地发生了变化,PEC中的1B_(155)→6B_(155)传递途径成为联系两个三聚体间能量传递的主要通道;p_(84)和e_(155)发射荧光份数都比C-PC时有很大的增加,其中,80%的总荧光由B_(84)色团发射。(4)由于p_(84)→o_(84)的传递的效率降低,快速传递对中二色团间的激发能传递次数比在C-PC中有很大的减少。(5)相比而言,PEC要比C-PC能更好地吸收与利用光能。  相似文献   

7.
藻胆体核心复合物结构与功能的研究(Ⅱ)   总被引:1,自引:0,他引:1  
从螺旋藻藻胆体中分离出4种不同种结构和光谱形式的变藻蓝蛋白复合物API、APⅡ、APⅢ和APB,利用吸收光谱、荧光光谱比较了三聚体和单体的光谱特性,通过对吸收光谱的光谱解叠以及各组分的归属,研究了变藻蓝蛋白复合物内各色团间相互作用的性质和在能量传递中的功能,结果表明,复合物内色团间的作用关系可以用Forster偶极-偶极作用机制来解释,由于妆蛋白和同源亚基的存在影响其结构的对称性,进而影响各色团间  相似文献   

8.
本文以一个具体的C-藻蓝蛋白杆和一个抽象的变藻蓝蛋白核组成蓝藻藻胆体模型,并用概率模拟法对这个模型中能量传递的历程进行模拟,结果表明:激发能沿杆的传递是以部分可逆的方式进行的,激发能由杆传递进核的速率小于盘间正向传递速率,杆中同一个六聚体盘内两个三聚体之间的能量传递主要通过m色团进行,其次是s色团,而f色团主要起把能量提供给m色团的“能量库”的作用;不同盘间激发能的传递主要靠f色团完成,这时m色团主要作为提供能量的“能量库”,激发能直接通过m色团从一个盘传递到另一个盘的份数约为f色团传递份数的1/10。激发能也主要通过f色团传递进核,模拟得到的激发能传递进核的效率约为90%。  相似文献   

9.
藻类天线系统是多种藻胆蛋白和连接蛋白巧妙构成的有机功能体 .目前藻类天线系统中多种藻胆蛋白高分辨晶体结构已获得测定 ,但这些结构只是来源于孤立态的藻胆蛋白 ,因而 ,藻胆蛋白复合物的研究是了解不同藻胆蛋白之间联系的有效途径 .鉴于目前实验方法的困难 ,利用计算机模拟方法研究了C 藻蓝蛋白复合物内能量传递过程 .计算结果显示出复合物内能量传递的主要途径和动态性质 ;同时通过系统内 2个C 藻蓝蛋白六聚体盘之间激发能传递随时间的分布 ,发现快速的激发能盘间传递过程 .根据时间分辨光谱对激发能传递时间的定义 ,当以零时刻理想δ脉冲光激发第 1个盘中的色团时 ,第 2个盘内激发能上升时间仅几个皮秒 ;第 3盘的激发能上升时间小于 2 0ps .这些结果第一次直观显示出盘间传递的快速过程 ,为完整藻类天线内进行的快速、高效的能量传递提供了合理的解释 .  相似文献   

10.
本文通过对条斑紫菜R-PE(藻红蛋白)及其α-β-γ亚基的吸收光谱和荧光光谱进行计算机解叠,研究了R-PE内发色团之间的能量传递过程,并对R-PE及亚基内的各发色团进行了“s”和“f”型的指认。发现在亚基中为“f”型的发色团在R-pE(αβ)6γ中起着“s”型发色团的作用,且将能量传递给最后的“f”型发色团。荧光激发偏振光谱进一步证明了R-PE内的能量转移过程与计算机解叠的结果一致。  相似文献   

11.
本文通过吸收光谱、激发光谱、荧光光谱、荧光激发偏振光谱、荧光偏振光谱和光谱解叠的方法,研究了蓝菌(Westielllopsis prolifica)中C-藻蓝蛋白单体和三聚体的光谱学特性及其发生在其中的能量传递过程。在三聚体中发现了能量逆传递的迹象,并建立了能量双向传递的能级模型,很好地解释了实验所观察到的现象。  相似文献   

12.
利用皮秒级时间分辨荧光各向同性和各向异性光谱技术对C 藻蓝蛋白六聚体内的能量传递过程进行了比较详细的研究 .从实验上证实 :在孤立的六聚体内 ,连接 2个C PC三聚体的能量通道是由以 1 β15 5 6 β15 5 和 2α84 5α84为代表的两条途径来承担的 ,并且其能量传递的时间分别为 2 0和 1 0 ps左右 ;所探测到一个 45ps左右的时间常数来源于该六聚体内同一C PC三聚体内 3个简并β84 PCB发色团间的能量传递过程 .这些能量传递的作用机制可用F rster偶极 偶极机制来描述  相似文献   

13.
萘基衍生物的光敏化瞬态吸收光谱   总被引:1,自引:0,他引:1  
本文利用激光闪光光解技术对二苯甲酮光敏化一系列萘基烷烃衍生物的三重态—三重态吸光光谱及他们之间的三重态能量传递进行了研究. 计算了三重态能量传递速度常数和传递效率, 二苯甲酮在不同体系中的三重态寿命, 探讨了分子结构对光敏化能量传递的影响.  相似文献   

14.
利用多变鱼腥藻的藻胆蛋白(PEC,PC和APC)重组出具有完整捕光系统和惟一终端发射基团的PBS模型复合物PEC/PC/APC,用超快速时间分辨光谱研究了 77K下重组复合物内能量传递的过程和机制.通过对不同探测波长下复合物激发态衰减曲线的拟合,讨论了不同色团间能量传递关系,尤其是能量在杆与核间的传递关系.探测到复合物杆中两个PEC三聚体之间的能量传递时间常数为 29ps; PEC六聚体与 PC六聚体间传递时间常数为 12 ps;能量由杆向 APC核传递的时间常数为 51 ps.  相似文献   

15.
合成了叶啉与酞菁以共价键连接起来的双发色团分子。测定了它们的吸收光谱,荧光光谱,荧光寿命等。计算了分子内能量传递过程的效率(φEnT)及速率常数(κEnT)。结果表明:在稀溶液中,卟啉与酞菁等克分子混合时,观察不到分子间能量传递过程现象的发生;而双发色团分子的分子内能量传递过程则明显发生了,其效率(φEnT=13~70%)与速率常数(κEnT=1.2×107~2.0×108s-1)取决于分子的结构类型。电子转移与能量传递过程与介质性质有关。在极性溶剂中有利于电子转移过程的进行,而不利于能量传递过程;在非极性溶剂中,则有利于能量传递过程的进行,而不利于电子转移。 选择性激发酞菁发色团,观测到了只有电子转移发生的过程,其电子转移效率达到38%。  相似文献   

16.
树枝形聚合物是一类围绕着中心核,外围链段和官能团呈指数增长的支化高分子.合成方法的发展使发色团可被精确地置于树枝形聚合物的核心、外围甚至支化节点处.树枝形聚合物的特殊结构使其作为模拟光捕获体系被广泛研究.光诱导电子转移和能量传递是光合作用中的重要过程,研究树枝形聚合物体系中的电子转移和能量传递对未来树枝形聚合物在光电器件中的应用有着重要意义.本文综述了近年来光捕获树枝形聚合物体系的研究进展,并重点介绍光捕获树枝形聚合物体系中的能量传递和电子转移过程研究.  相似文献   

17.
本文应用时间分辨激光诱导荧光光谱研究了二茂铁衍生物:(C10H6N2)C=N-N=CR-Fc(R=H,CH3,Fc为二茂铁基)与联吡啶钌:(bpy)3Ru2+及一系列钌—铁双核配合物的电子转移和能量传递过程。得到分子间电子转移和能量传递过程的速率常数约为109dm3mol-1s-1,而分子内传递过程的速率常数约为107dm3mol-1s-1,证实了分子内传递过程比分子间传递过程进行得更彻底。并用Marcus理论计算了分子间传递过程的速率常数,探讨了转移机理,讨论了瞬态法和稳态法所得结果的差异  相似文献   

18.
利用藻类天线的C 藻蓝蛋白和锌酞菁络合物建立一种新的光合器模拟体系 .C 藻蓝蛋白通过总浓度 2 0 % (质量体积比 )的非离子型表面活性剂Tween 80和助表面活性剂正戊醇 (Tween 80∶正戊醇 =4∶1 ,质量比 )与环己烷形成反相胶束增溶 .当 [H2 O]/[Tween 80 ](Rw)≥ 9.0时 ,C 藻蓝蛋白的活性得到保持 .当激发C 藻蓝蛋白时 ,能量由C 藻蓝蛋白传递给酞菁 .能量传递效率与C 藻蓝蛋白的浓度无关 ,而仅与酞菁浓度有关 ,并且近似遵循Perrin公式 .证明能量传递属于刚性体系中的偶极 偶极作用机制 .通过计算得出不同酞菁浓度下的猝灭范界半径 .例如 ,当酞菁浓度为 2 .1 0× 1 0 -4 mol/L时 ,体系的猝灭范界半径为 1 0 .9nm .  相似文献   

19.
本文发现从螺旋藻(Spirulina platensis)中分离出的变藻蓝蛋白三聚体(αβ)_3在解聚为单体(αβ)时,伴随着明显的光谱学特性的变化。我们利用稳态和皮秒(10~(12)S)瞬态光谱学的方法研究了导致变藻蓝蛋白单体(αβ)和三聚体(αβ)_3光谱学差别的发色团之间的相互作用。计算了变藻蓝蛋白中发色团的吸收和发射跃迁偶极矩之间的夹角。尝试性地建立了用以解释变藻蓝蛋白内发色团之间的相互作用的激子相互作用和弱偶极相互作用的机理模型。  相似文献   

20.
将一种含具有聚集诱导发光性能(AIE)的四苯乙烯的2-脲基-4[1H]-嘧啶酮衍生物(TPE-bis UPy)在氯仿中通过四重氢键作用组装形成的超分子聚合物,再以十六烷基三甲基溴化铵(CTAB)为表面活性剂利用微乳法制备了基于超分子聚合物的纳米球.这种纳米球的形貌通过SEM进行了表征,具有规整的形貌与尺寸.相比在溶液里,该超分子聚合物纳米球的荧光显著增强.通过改变单体的浓度得到了3种不同粒径的超分子聚合物纳米球,DLS表征其粒径分别为46、66和91 nm.将这3种不同粒径的TPE-bis UPy超分子聚合物纳米小球与带负电的曙红(EY)进行组装,由于静电相互作用曙红吸附在纳米球表面,拉近了TPE-bis UPy和曙红之间的距离,使得在组装体内TPE-bis UPy可以有效地将激发能传递给曙红分子,该体系的发光颜色从蓝色荧光变为黄绿色荧光,其能量传递效率分别为62%、55%和39%,洗去表面活性剂CTAB后静电作用减弱,能量传递效率显著降低,分别为46%、36%和33%.研究表明,TPE-bis UPy超分子聚合物纳米小球与曙红的组装体系内,静电作用越强能量传递效率越高;超分子聚合物纳米球粒径越小,能量传递效率越高;并且通过这种组装可以调控体系的发光颜色,能量传递也可以通过体系的发光颜色变化观察到.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号