首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
To elucidate the applicability and properties of ionic liquids (ILs) to serve as chemical reaction media for the activation of small molecules by transition-metal complexes, detailed kinetic and mechanistic studies were performed on the reversible binding of NO to FeCl(2) dissolved in the IL 1-ethyl-3-methylimidazolium dicyanamide ([emim][dca]) as a solvent. We report, for the first time, the application of laser flash photolysis at ambient and high pressure to study the kinetics of this reaction in an IL. The kinetic data and activation parameters for the "on" and "off" reactions suggest that both processes follow a limiting dissociative (D) ligand substitution mechanism, in contrast to that reported for the same reaction in aqueous solution, where this well-known "brown-ring" reaction follows an interchange dissociative (I(d)) ligand substitution mechanism. The observed difference apparently arises from the participation of the IL anion as a N-donor ligand, as evidenced by the formation of polymeric [Fe(dca)(3)Cl](x)[emim](2x) chains in the solid state and verified by X-ray crystallography. In addition, infrared (IR), Mo?ssbauer, and EPR spectra were recorded for the monomeric reaction product [Fe(dca)(5)NO](3-) formed in the IL, and the parameters closely resemble those of the {FeNO}(7) unit in other well-characterized nitrosyl complexes. It is concluded that its electronic structure is best described by the presence of a high-spin Fe(III) (S = 5/2) center antiferromagnetically coupled to NO(-) (S = 1), yielding the observed spin quartet ground state (S(t) = 3/2).  相似文献   

2.
In this review, the reactions of nitric oxide with selected metal complexes of biological and environmental importance are reviewed. Fundamental chemical kinetics and mechanisms that lead to the formation and decay of nitrosyl complexes are illustrated and discussed on the basis of work on Fe(II) chelate complexes and selected biomolecules such as metmyoglobin and cobalamin. In the context of common interference of higher nitrogen oxides in the studies on the interactions of nitric oxide with metal centres, the reactions of NO2/HONO (in aqueous media) and NO2/N2O3 (in aprotic media) with metal complexes are described on the basis of selected examples. Throughout the review the focus is on the mechanistic details of the binding of NO to and the release of NO from metal complexes, and the nature of the stable metal–NO complexes produced in solution.  相似文献   

3.
The kinetics and mechanism of the reaction between nitric oxide and aquapentacyanoferrate(III) were studied in detail. Pentacyanonitrosylferrate (nitroprusside, NP) was produced quantitatively in a pseudo-first-order process. The complex-formation rate constant was found to be 0.252 +/- 0.004 M(-1) s(-1) at 25.5 degrees C, pH 3.0 (HClO(4)), and I = 0.1 M (NaClO(4)), for which the activation parameters are DeltaH++ = 52 +/- 1 kJ mol(-1), DeltaS++ = -82 +/- 4 J K(-1) mol(-1), and DeltaV++ = -13.9 + 0.5 cm(3) mol(-1). These data disagree with earlier studies on complex-formation reactions of aquapentacyanoferrate(III), for which a dissociative interchange (I(d)) mechanism was suggested. The aquapentacyanoferrate(II) ion was detected as a reactive intermediate in the reaction of aquapentacyanoferrate(III) with NO, by using pyrazine and thiocyanate as scavengers for this intermediate. In addition, the reactions of other [Fe(III)(CN)(5)L](n-) complexes (L = NCS(-), py, NO(2)(-), and CN(-)) with NO were studied. These experiments also pointed to the formation of Fe(II) species as intermediates. It is proposed that aquapentacyanoferrate(III) is reduced by NO to the corresponding Fe(II) complex through a rate-determining outer-sphere electron-transfer reaction controlling the overall processes. The Fe(II) complex rapidly reacts with nitrite producing [Fe(II)(CN)(5)NO(2)](4)(-), followed by the fast and irreversible conversion to NP.  相似文献   

4.
The reactions of nitric oxide and carbon monoxide with water soluble iron and cobalt porphyrin complexes were investigated over the temperature range 298-318 K and the hydrostatic pressure range 0.1-250 MPa [porphyrin ligands: TPPS = tetra-meso-(4-sulfonatophenyl)porphinate and TMPS = tetra-meso-(sulfonatomesityl)porphinate]. Large and positive DeltaS(double dagger) and DeltaV(double dagger) values were observed for NO binding to and release from iron(III) complexes Fe(III)(TPPS) and Fe(III)(TMPS) consistent with a dissociative ligand exchange mechanism where the lability of coordinated water dominates the reactivity with NO. Small positive values for Delta and Delta for the fast reactions of NO with the iron(II) and cobalt(II) analogues (k(on) = 1.5 x 10(9) and 1.9 x 10(9) M(-1) s(-1) for Fe(II)(TPPS) and Co(II)(TPPS), respectively) indicate a mechanism dominated by diffusion processes in these cases. However, reaction of CO with the Fe(II) complexes (k(on) = 3.6 x 10(7) M(-1) s(-1) for Fe(II)(TPPS)) displays negative Delta and Delta values, consistent with a mechanism dominated by activation rather than diffusion terms. Measurements of NO dissociation rates from Fe(II)(TPPS)(NO) and Co(II)(TPPS)(NO) by trapping free NO gave k(off) values of 6.3 x 10(-4) s(-1) and 1.5 x 10(-4) s(-1). The respective M(II)(TPPS)(NO) formation constants calculated from k(on)/k(off) ratios were 2.4 x 10(12) and 1.3 x 10(13) M(-1), many orders of magnitude larger than that (1.1 x 10(3) M(-1)) for the reaction of Fe(III)(TPPS) with NO.  相似文献   

5.
A detailed kinetic study of the substitution behavior of the seven-coordinate [Fe(dapsox)(L)2]ClO4 complex (H(2)dapsox = 2,6-diacetylpyridine-bis(semioxamazide), L = solvent or its deprotonated form) with thiocyanate as a function of the thiocyanate concentration, temperature, and pressure was undertaken in protic (EtOH and acidified EtOH and MeOH) and aprotic (DMSO) organic solvents. The lability and substitution mechanism depend strongly on the selected solvent (i.e., on solvolytic and protolytic processes). In the case of alcoholic solutions, substitution of both solvent molecules by thiocyanate could be observed, whereas in DMSO only one substitution step occurred. For both substitution steps, [Fe(dapsox)(L)2]ClO4 shows similar mechanistic behavior in methanol and ethanol, which is best reflected by the values of the activation volumes (MeOH DeltaV(I) = +15.0 +/- 0.3 cm(3) mol(-1), DeltaV(II) = +12.0 +/- 0.2 cm(3) mol(-1); EtOH DeltaV(I) = +15.8 +/- 0.7 cm(3) mol(-1), DeltaV(II) = +11.1 +/- 0.5 cm(3) mol(-1)). On the basis of the reported activation parameters, a dissociative (D) mechanism for the first substitution step and a D or dissociative interchange (I(d)) mechanism for the second substitution step are suggested for the reaction in MeOH and EtOH. This is consistent with the predominant existence of alcoxo [Fe(dapsox)(ROH)(OR)] species in alcoholic solutions. In comparison, the activation parameters for the substitution of the aqua-hydroxo [Fe(dapsox)(H2O)(OH)] complex by thiocyanate at pH 5.1 in MES were determined to be DeltaH = 72 +/- 3 kJ mol(-1), DeltaS = +38 +/- 11 J K(-1) mol(-1), and DeltaV = -3.0 +/- 0.1 cm(3) mol(-1), and the operation of a dissociative interchange mechanism was suggested, taking the effect of pressure on the employed buffer into account. The addition of triflic acid to the alcoholic solutions ([HOTf] = 10(-3) and 10(-2) M to MeOH and EtOH, respectively) resulted in a drastic changeover in mechanism for the first substitution step, for which an associative interchange (Ia) mechanism is suggested, on the basis of the activation parameters obtained for both the forward and reverse reactions and the corresponding volume profile. The second substitution step remained to proceed through an I(d) or D mechanism (acidified MeOH DeltaV(II) = +9.2 +/- 0.2 cm(3) mol(-1); acidified EtOH DeltaV(II) = +10.2 +/- 0.2 cm(3) mol(-1)). The first substitution reaction in DMSO was found to be slowed by several orders of magnitude and to follow an associative interchange mechanism (DeltaS = -50 +/- 9 J K(-1) mol(-1), DeltaV(I) = -1.0 +/- 0.5 cm(3) mol(-1)), making DMSO a suitable solvent for monitoring substitution processes that are extremely fast in aqueous solution.  相似文献   

6.
Because of our interest in evaluating a possible relationship between complex dynamics and water exchange reactivity, we performed (1)H NMR studies on the paramagnetic aminopolycarboxylate complexes Fe (II)-TMDTA and Fe (II)-CyDTA and their diamagnetic analogues Zn (II)-TMDTA and Zn (II)-CyDTA. Whereas a fast Delta-Lambda isomerization was observed for the TMDTA species, no acetate scrambling between in-plane and out-of-plane positions is accessible for any of the CyDTA complexes because the rigid ligand backbone prevents any configurational changes in the chelate system. In variable-temperature (1)H NMR studies, no evidence of spectral coalescence due to nitrogen inversion was found for any of the complexes in the available temperature range. The TMDTA complexes exhibit the known solution behavior of EDTA, whereas the CyDTA complexes adopt static solution structures. Comparing the exchange kinetics of flexible EDTA-type complexes and static CyDTA complexes appears to be a suitable method for evaluating the effect of ligand dynamics on the overall reactivity. In order to assess information concerning the rates and mechanism of water exchange, we performed variable-temperature and -pressure (17)O NMR studies of Ni (II)-CyDTA, Fe (II)-CyDTA, and Mn (II)-CyDTA. For Ni (II)-CyDTA, no significant effects on line widths or chemical shifts were apparent, indicating either the absence of any chemical exchange or the existence of a very small amount of the water-coordinated complex in solution. For [Fe (II)(CyDTA)(H 2O)] (2-) and [Mn (II)(CyDTA)(H 2O)] (2-), exchange rate constant values of (1.1 +/- 0.3) x 10 (6) and (1.4 +/- 0.2) x 10 (8) s (-1), respectively, at 298 K were determined from fits to resonance-shift and line-broadening data. A relationship between chelate dynamics and reactivity seems to be operative, since the CyDTA complexes exhibited significantly slower reactions than their EDTA counterparts. The variable-pressure (17)O NMR measurements for [Mn (II)(CyDTA)(H 2O)] (2-) yielded an activation volume of +9.4 +/- 0.9 cm (3) mol (-1). The mechanism is reliably assigned as a dissociative interchange (I d) mechanism with a pronounced dissociation of the leaving water molecule in the transition state. In the case of [Fe (II)(CyDTA)(H 2O)] (2-), no suitable experimental conditions for variable-pressure measurements were accessible.  相似文献   

7.
Jee JE  van Eldik R 《Inorganic chemistry》2006,45(16):6523-6534
The nitrosyl complexes formed during the binding of NO to the (Pn)FeIII(H2O)2 (n = 8+ and 8-) complexes, viz., (P8-)FeII(H2O)(NO+) and (P8+)FeII(H2O)(NO+), undergo subsequent reductive nitrosylation reactions that were found to be catalyzed by nitrite, which was also produced during the reaction. The effect of the nitrite concentration, pH, temperature, and pressure on the nitrite-catalyzed reductive nitrosylation process was studied in detail for (P8-)FeIII(H2O)2, (P8+)FeIII(H2O)2, and (P8+)FeIII(OH)(H2O), from which rate and activation parameters were obtained. On the basis of these data, we propose mechanistic pathways for the studied reactions. The available results favor the operation of an innersphere electron-transfer process between nitrite and coordinated NO(+). By way of comparison, the cationic porphyrin complex (P8+)FeIII(L)2 (L = H2O or OH-) was found to react with NO2(-) to yield the nitrite adduct (P8+)FeIII(L)(NO2)(-)). A detailed kinetic studied revealed that nitrite binds to (P8+)FeIII(H2O)2 according to a dissociative mechanism, whereas nitrite binding to (P8+)FeIII(OH)(H2O) at higher pH follows an associative mechanism, similar to that reported for the binding of NO to these complexes.  相似文献   

8.
In-depth kinetic and mechanistic studies on the reversible binding of NO to water-soluble iron(III) porphyrins as a function of pH revealed unexpected reaction kinetics for monohydroxo-ligated (P)Fe(III)(OH) species formed by deprotonation of coordinated water in diaqua-ligated (P)Fe(III)(H(2)O)(2). The observed significant decrease in the rate of NO binding to (P)Fe(OH) as compared to that of (P)Fe(H(2)O)(2) does not conform with expectations based on previous mechanistic work on NO-heme interactions, which would point to a diffusion-limited reaction for the five-coordinate Fe(III) center in (P)Fe(OH). The decrease in rate and an associatively activated mode of NO binding observed at high pH is ascribed to an increase in the activation barrier related to spin state and structural changes accompanying NO coordination to the high-spin (P)Fe(III)(OH) complex. The existence of such a barrier has previously been observed in the reactions of five-coordinate iron(II) hemes with CO and is evidenced for the first time for the process involving coordination of NO to the iron heme complex. The observed reactivity pattern, relevant in the context of studies on NO interactions with synthetic and biologically important hemes (in particular, hemoproteins), is reported here for an example of a simple water-soluble iron(III) porphyrin [meso-tetrakis(sulfonatomesityl)porphinato]-iron(III), (TMPS)Fe(III).  相似文献   

9.
The kinetics of complex-formation reactions of six Pd(dach) complexes, dach = 1,2-trans-R,R-diaminocyclohexane, viz. [Pd(dach)Cl2], [Pd(dach)(H2O)2]2+, and four complexes with different chelating leaving groups X-Y, viz. [Pd(dach)(O,O-cyclobutane-1,1-dicarboxylate)], [Pd(dach)(N,O-glycine)](+), [Pd(dach)(N,S-methionine)]+ and [Pd(dach)(O,O-oxalate)], were studied. The effect of the leaving group on the lability of the resulting Pd(ii) complexes was studied for the nucleophiles inosine, inosine-5'-monophosphate and guanosine-5'-monophosphate under pseudo-first-order conditions as a function of nucleophile concentration, temperature and pressure using stopped-flow techniques. Two consecutive reaction steps, which both depend on the nucleophile concentration, were observed. The rate constants for all reactions indicate a direct substitution of the X-Y chelate by the selected nucleophiles, thereby showing that the nature of the chelate, viz. O-O (cbdca), (ox), N-O (gly) or S-N (l-met), plays an important role in the kinetic and mechanistic behavior of the Pd(ii) complexes. The mechanism of the substitution reactions is associative in nature as supported by the large and negative values of DeltaS(double dagger) and DeltaV(double dagger).  相似文献   

10.
The polyanionic water-soluble and non-mu-oxo-dimer-forming iron porphyrin iron(III) 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5(2),5(6),15(2),15(6)-tetrakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin, (P(8-))Fe(III) (1), was synthesized as an octasodium salt by applying well-established porphyrin and organic chemistry procedures to bromomethylated precursor porphyrins and characterized by standard techniques such as UV-vis and (1)H NMR spectroscopy. A single pK(a1) value of 9.26 was determined for the deprotonation of coordinated water in (P(8-))Fe(III)(H(2)O)(2) (1-H(2)()O) present in aqueous solution at pH <9. The porphyrin complex reversibly binds NO in aqueous solution to give the mononitrosyl adduct, (P(8-))Fe(II)(NO(+))(L), where L = H(2)O or OH(-). The kinetics of the binding and release of NO was studied as a function of pH, temperature, and pressure by stopped-flow and laser flash photolysis techniques. The diaqua-ligated form of the porphyrin complex binds and releases NO according to a dissociative interchange mechanism based on the positive values of the activation parameters DeltaS() and DeltaV() for the "on" and "off" reactions. The rate constant k(on) = 6.2 x 10(4) M(-1) s(-1) (24 degrees C), determined for NO binding to the monohydroxo-ligated (P(8-))Fe(III)(OH) (1-OH) present in solution at pH >9, is markedly lower than the corresponding value measured for 1-H(2)O at lower pH (k(on) = 8.2 x 10(5) M(-1) s(-1), 24 degrees C, pH 7). The observed decrease in the reactivity is contradictory to that expected for the diaqua- and monohydroxo-ligated forms of the iron(III) complex and is accounted for in terms of a mechanistic changeover observed for 1-H(2)O and 1-OH in their reactions with NO. The mechanistic interpretation offered is further substantiated by the results of water-exchange studies performed on the polyanionic porphyrin complex as a function of pH, temperature, and pressure.  相似文献   

11.
The N-protonated bismercaptoethanediazacyclooctane serves as a bidentate dithiolate ligand to oxidized Fe(NO)(2) of Enemark-Feltam notation, E-F [Fe(NO)(2)],(9) mimicking Cys-X-Cys binding of Fe(NO)(2) to proteins or thio-biomolecules. The neutral compound is characterized by the well-known g = 2.03 EPR signal which is a hallmark of dinitrosyl iron complexes, DNIC's. The Fe(NO)(2) unit can be removed from the chelate by excess PhS(-), producing (PhS)(2)Fe(NO)(2)(-). Transfer of NO from Fe(H(+)bme-daco)(NO)(2) (nu(NO) = 1740, 1696 cm(-)(1)) to Fe(II) of [(bme-daco)Fe](2) yields the five-coordinate, square-pyramidal N(2)S(2)Fe(NO) (nu(NO) = 1649 cm(-)(1)), where NO is in the apical position. Its isotropic EPR signal at g = 2.05 is consistent with E-F [Fe(NO)](7) formulation. In excess NO, Roussin's red ester-type molecules are formed as dinuclear or tetranuclear species, [(micro-SRS)[Fe(2)(NO)(4)]](n)() (n =1, 2). These well-characterized molecules furnish reference points for positions and patterns in nu(NO) vibrational spectroscopy expected to be useful for in vivo studies of NO degradation of iron-sulfur clusters in ferredoxins.  相似文献   

12.
Dicationic ligands incorporating two 2,2'-bipyridine units and two imidazolium moieties, [1](2+) and [2](2+), form stable chelate complexes with Cu(II) and Cu(I) in acetonitrile solution. Each Cu(II) complex binds two X(-) ions according to two stepwise equilibria, the first involving the Cu(II) centre and the second involving the bis-imidazolium compartment. Cu(I) complexes are able to host only one NO(3)(-) ion in the bis-imidazolium cavity, while other anions induce demetallation. Thus, in the presence of one equivalent of NO(3)(-), the Cu(II)/Cu(I) redox change makes the anion translocate quickly and reversibly from one binding site to the other within the [Cu(II,I)(1)](4+/3+) system, as demonstrated by cyclic voltammetry and controlled-potential electrolysis experiments.  相似文献   

13.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

14.
Paramagnetic effects on the relaxation rate and shift difference of the (17)O nucleus of bulk water enable the study of water exchange mechanisms on transition metal complexes by variable temperature and variable pressure NMR. The water exchange kinetics of [Mn(II)(edta)(H2O)](2-) (CN 7, hexacoordinated edta) was reinvestigated and complemented by variable pressure NMR data. The results revealed a rapid water exchange reaction for the [Mn(II)(edta)(H2O)](2-) complex with a rate constant of k(ex) = (4.1 +/- 0.4) x 10(8) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) are 36.6 +/- 0.8 kJ mol(-1), +43 +/- 3 J K(-1) mol(-1), and +3.4 +/- 0.2 cm(3) mol(-1), which are in line with a dissociatively activated interchange (I(d)) mechanism. To analyze the structural influence of the chelate, the investigation was complemented by studies on complexes of the edta-related tmdta (trimethylenediaminetetraacetate) chelate. The kinetic parameters for [Fe(II)(tmdta)(H2O)](2-) are k(ex) = (5.5 +/- 0.5) x 10(6) s(-1) at 298.2 K, DeltaH(double dagger) = 43 +/- 3 kJ mol(-1), DeltaS(double dagger) = +30 +/- 13 J K(-1) mol(-1), and DeltaV(double dagger) = +15.7 +/- 1.5 cm(3) mol(-1), and those for [Mn(II)(tmdta)(H2O)](2-) are k(ex) = (1.3 +/- 0.1) x 10(8) s(-1) at 298.2 K, DeltaH(double dagger) = 37.2 +/- 0.8 kJ mol(-1), DeltaS(double dagger) = +35 +/- 3 J K(-1) mol(-1), and DeltaV(double dagger) = +8.7 +/- 0.6 cm(3) mol(-1). The water containing species, [Fe(III)(tmdta)(H2O)](-) with a fraction of 0.2, is in equilibrium with the water-free hexa-coordinate form, [Fe(III)(tmdta)](-). The kinetic parameters for [Fe(III)(tmdta)(H2O)](-) are k(ex) = (1.9 +/- 0.8) x 10(7) s(-1) at 298.2 K, DeltaH(double dagger) = 42 +/- 3 kJ mol(-1), DeltaS(double dagger) = +36 +/- 10 J K(-1) mol(-1), and DeltaV(double dagger) = +7.2 +/- 2.7 cm(3) mol(-1). The data for the mentioned tmdta complexes indicate a dissociatively activated exchange mechanism in all cases with a clear relationship between the sterical hindrance that arises from the ligand architecture and mechanistic details of the exchange process for seven-coordinate complexes. The unexpected kinetic and mechanistic behavior of [Ni(II)(edta')(H2O)](2-) and [Ni(II)(tmdta')(H2O)](2-) is accounted for in terms of the different coordination number due to the strong preference for an octahedral coordination environment and thus a coordination equilibrium between the water-free, hexadentate [M(L)](n+) and the aqua-pentadentate forms [M(L')(H2O)](n+) of the Ni(II)-edta complex, which was studied in detail by variable temperature and pressure UV-vis experiments. For [Ni(II)(edta')(H2O)](2-) (CN 6, pentacoordinated edta) a water substitution rate constant of (2.6 +/- 0.2) x 10(5) s(-1) at 298.2 K and ambient pressure was measured, and the activation parameters DeltaH(double dagger), DeltaS(double dagger), and DeltaV(double dagger) were found to be 34 +/- 1 kJ mol(-1), -27 +/- 2 J K(-1) mol(-1), and +1.8 +/- 0.1 cm(3) mol(-1), respectively. For [Ni(II)(tmdta')(H2O)](2-), we found k = (6.4 +/- 1.4) x 10(5) s(-1) at 298.2 K, DeltaH(double dagger) = 22 +/- 4 kJ mol(-1), and DeltaS(double dagger) = -59 +/- 5 J K(-1) mol(-1). The process is referred to as a water substitution instead of a water exchange reaction, since these observations refer to the intramolecular displacement of coordinated water by the carboxylate moiety in a ring-closure reaction.  相似文献   

15.
The reduced form of aquacobalamin binds nitric oxide very effectively to yield a nitrosyl adduct, Cbl(II)-NO. UV-vis, (1)H-, (31)P-, and (15)N NMR data suggest that the reaction product under physiological conditions is a six-coordinate, "base-on" form of the vitamin with a weakly bound alpha-dimethylbenzimidazole base and a bent nitrosyl coordinated to cobalt at the beta-site of the corrin ring. The nitrosyl adduct can formally be described as Cbl(III)-NO-. The kinetics of the binding and dissociation reactions was investigated by laser flash photolysis and stopped-flow techniques, respectively. The activation parameters, DeltaH, DeltaS, and DeltaV, for the forward and reverse reactions were estimated from the effect of temperature and pressure on the kinetics of these reactions. For the "on" reaction of Cbl(II) with NO, the small positive DeltaS and DeltaV values suggest the operation of a dissociative interchange (I(d)) substitution mechanism at the Co(II) center. Detailed laser flash photolysis and (17)O NMR studies provide evidence for the formation of water-bound intermediates in the laser flash experiments and strongly support the proposed I(d) mechanism. The kinetics of the "off" reaction was studied using an NO-trapping technique. The respective activation parameters are also consistent with a dissociative interchange mechanism.  相似文献   

16.
Owen TM  Rohde JU 《Inorganic chemistry》2011,50(11):5283-5289
Reaction of [FeO(tmc)(OAc)](+) with the free radical nitrogen monoxide afforded a mixture of two Fe(II) complexes, [Fe(tmc)(OAc)](+) and [Fe(tmc)(ONO)](+) (where tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane and AcO(-) = acetate anion). The amount of nitrite produced in this reaction (ca. 1 equiv with respect to Fe) was determined by ESI mass spectrometry after addition of (15)N-enriched NaNO(2). In contrast to oxygen atom transfer to PPh(3), the NO reaction of [FeO(tmc)(OAc)](+) proceeds through an Fe(III) intermediate that was identified by UV-vis-NIR spectroscopy and ESI mass spectrometry and whose decay is dependent on the concentration of methanol. The observations are consistent with a mechanism involving oxide(?1-) ion transfer from [FeO(tmc)(OAc)](+) to NO to form an Fe(III) complex and NO(2)(-), followed by reduction of the Fe(III) complex. Competitive binding of AcO(-) and NO(2)(-) to Fe(II) then leads to an equilibrium mixture of two Fe(II)(tmc) complexes. Evidence for the incorporation of oxygen from the oxoiron(IV) complex into NO(2)(-) was obtained from an (18)O-labeling experiment. The reported reaction serves as a synthetic example of the NO reactivity of biological oxoiron(IV) species, which has been proposed to have physiological functions such as inhibition of oxidative damage, enhancement of peroxidase activity, and NO scavenging.  相似文献   

17.
The mechanisms for the substitution of an aqua ligand with F(-) in monomeric Al complexes were studied with density functional theory (DFT). Typical mechanisms are modeled to determine the preferred substitution pathway according to the activation energy barriers. The present computational results are in favor of interchange associative (I(a)) mechanism for the substitution of F(-) into Al(H(2)O)(6)(3+), whereas interchange dissociative (I(d)) mechanism is preferred for the substitution into Al(H(2)O)(5)(OH)(2+), which is in agreement with the previous experimental findings. This implies the mechanistic changeover from I(a) to I(d) induced by the spectator hydroxyl ligand. Like the water-exchange reaction, the substitution rate is accelerated by OH(-) ligand. The difference of the computational and experimental activation enthalpy values is interpreted as the DFT errors in energy and the deviation of transmission coefficient from unity.  相似文献   

18.
Within assemblies prepared by metal-templated imine condensation, one amine residue (subcomponent) may be replaced with another through substitution reactions. Proton transfer from a more to a less acidic amine may be used as the driving force for substitution. Herein, we detail the development of a set of selectivity rules to predict the outcome of subcomponent substitution reactions when several different substrates are present. When both iron and copper complexes were present, substitution occurred preferentially at imines bound to copper. This preference was kinetic in nature in the absence of a chelating amine subcomponent: The different amine residues were found to scramble between the copper and iron complexes following an initial clean substitution at the copper-bound imine. When both chelating and nonchelating amine subcomponents were present, the preference became thermodynamic in nature. Only the nonchelating amine was substituted and no evidence of scrambling was found after the reaction mixture was heated to 50 degrees C for several days. This thermodynamic selectivity, based on the chelate effect, operated in mixtures of Cu(I) and Fe(II) complexes, and in systems containing only Fe(II) complexes.  相似文献   

19.
The bidentate coordination of an alpha-keto acid to an iron(II) center via the keto group and the carboxylate gives rise to metal-to-ligand charge-transfer transitions between 400 and 600 nm in model complexes and in alpha-ketoglutarate-dependent dioxygenases. Excitation into these absorption bands of the Fe(II)TauD(alpha-KG) complex (TauD = taurine/alpha-ketoglutarate dioxygenase, alpha-KG = alpha-ketoglutarate) elicits two resonance Raman features at 460 and 1686 cm(-1), both of which are sensitive to (18)O labeling. Corresponding studies of model complexes, the six-coordinate [Fe(II)(6-Me(3)-TPA)(alpha-keto acid)](+) and the five-coordinate [Fe(II)(Tp(Ph2))(alpha-keto acid)] (6-Me(3)-TPA = tris[(6-methyl-2-pyridyl)methyl]amine, Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate), lead to the assignment of these two features to the Fe(II)(alpha-keto acid) chelate mode and the nu(C==O) of the keto carbonyl group, respectively. Furthermore, the chelate mode is sensitive to the coordination number of the metal center; binding of a sixth ligand to the five-coordinate [Fe(II)(Tp(Ph2))(benzoylformate)] elicits a 9--20 cm(-1) downshift. Thus, the 10 cm(-1) upshift of the chelate mode observed for Fe(II)TauD(alpha-KG) upon the addition of the substrate, taurine, is associated with the conversion of the six-coordinate metal center to a five-coordinate center, as observed for the iron center of clavaminate synthase from X-ray crystallography (Zhang, Z.; et al. Nat. Struct. Biol. 2000, 7, 127-133) and MCD studies (Zhou, J.; et al. J. Am. Chem. Soc. 1998, 120, 13539--13540). These studies provide useful insights into the initial steps of the oxygen activation mechanism of alpha-ketoglutarate-dependent dioxygenases.  相似文献   

20.
The oxidations of iodide by [Fe(III)(bpy)2(CN)2]NO3, [Fe(III)(dmbpy)2(CN)2]NO3, [Fe(III)(CH3Cp)2]PF6, and [Fe(III)(5-Cl-phen)2(CN)2]NO3 at 25 degrees C, ionic strength of 0.10 M in acetonitrile, are catalyzed by trace levels of copper ions. This copper catalysis can be effectively masked with the addition of 5.0 mM 2,2'-bipyridine (bpy), which permits the rate law of the direct reactions to be determined: -d[Fe(III)]/dt = 2(k1[I-] + k2[I-]2)[Fe(III)]. According to 1H NMR and UV-vis spectra, the products of the reaction are I3- and the corresponding Fe(II) complexes, with the stoichiometric ratio (delta[I3-]/delta[Fe(II)]) of 1:2. Linear free-energy relationships (LFERs) are obtained for both log k1 and log k2 vs E(1/2) with slopes of 16.1 and 13.3 V(-1), respectively. A mechanism is inferred in which k1 corresponds to simple electron transfer to form I* plus Fe(II), while k2 leads directly to I2(-*). From the mild kinetic inhibition of the k1 path by [Fe(II)(bpy)2(CN)2] the standard potential (Eo) of I*/I- is derived: Eo = 0.60 +/- 0.01 V (vs [Fe(Cp)2](+/0)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号